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Abstract

We investigate the role and performance of imitative behaviour in a class of quantity-

setting Cournot games. Within a framework of evolutionary competition between ra-

tional, best-response and imitators players we found that the equilibrium stability de-

pends on the intensity of the evolutionary pressure and on the stability of the cheapest

heuristic. When the cheapest behavioural rule is the stable heuristic (i.e. imitation),

the dynamics converge to a situation where most �rms use this behavioural rule and all

�rms produce the Cournot-Nash equilibrium quantity. When the cheapest heuristic is

unstable one (i.e. best-response), complicated endogenous �uctuations may occur along

with the co-existence of heuristics.
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1 Introduction

Theocharis (1960) remarkably shows that, when �rms compete on quantity using the Cournot

(1838) adjustment process,1 the Cournot-Nash equilibrium becomes unstable if the number

of �rms exceeds two. In fact, with linear demand and constant marginal costs, the Cournot-

Nash equilibrium loses stability and bounded but perpetual oscillations arise already for a

triopoly. For more than three �rms oscillations grow unbounded, but they are limited once

the non-negativity price and demand constraints bind.

Whereas Theocharis (1960) focused only on the homogeneous (Cournot) adjustment pro-

cess, more recent research extends to models of heterogeneous expectations2. For instance,

Hommes, Ochea, and Tuinstra (2018) introduced a framework in which these heuristics com-

pete in a quantity-setting oligopoly with arbitrary number of �rms. Each �rm chooses a be-

havioural rule from a �nite set of di¤erent rules, which are assumed to be commonly known.

When making a choice concerning the behavioural rules, a �rm takes the past performance

of the rules, i.e., the past realized pro�t net of the cost associated with the behavioural

rules to compare �tness. Both past performance and costs associated with the behavioural

rules are publicly available. This implies that successful heuristics will continue to be used,

while unsuccessful behavioural rules are dropped. This strategic behaviour thus causes the

distribution of fractions of �rms over a given set of behavioural rules to change per period.

Hommes, Ochea, and Tuinstra (2018) focus on the Cournot heuristic in competition with

the Nash quantity or with rational �rms. Interestingly Huck, Normann, and Oechssler (2002)

discuss a linear Cournot oligopoly experiment with four �rms. They do not �nd that quantities

explode as the Theocharis (1960) model predicts, instead the time average quantities converge

to the Cournot-Nash equilibrium quantity, although there is substantial volatility around the

Cournot-Nash equilibrium quantity.

1Firms that display Cournot behaviour take the current period�s aggregate output of their competitors as
a predictor for the next period competitors�aggregate output and best-respond to that.

2In models with heterogeneous expectations producers can have di¤erent heuristics to adjust their produc-
tion.
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There is a growing interest, both theoretical and experimental, in the study of the perform-

ance of imitative players in various classes of games. Schipper (2009) investigates imitate-the-

best players and optimizers in Cournot oligopoly and �nds that in the long-run, stationary

distribution of the stochastic process imitators are better o¤. Moreover imitation can be

unbeatable if imitate-the-best heuristic is not subjected to a money pump, i.e. game is

not of Rock-Scissors-Paper variety (Duersch, Oechssler, and Schipper (2012)). Subsequently,

Duersch, Oechssler, and Schipper (2014) show that unconditional imitation (of the tit-for-tat

variety) is essentially unbeatable in class of potential games. Huck, Normann, and Oechssler

(2002) �nd that a process where participants mix between the Cournot adjustment heuristic

an imitating the previous period�s average quantity gives the best description of behaviour.

Duersch, Kolb, Oechssler, and Schipper (2010) analyse a Cournot duopoly, subjects earn on

average higher pro�ts when playing against "best-response" computers than against "imitate"

computers.

Therefore we focus on competition of the imitation heuristic with the Cournot heuristic.

Moreover, since classical economic theory assumes rationality, we investigate the dynam-

ics in competition with this heuristic too. In total �ve models where imitators compete

with Cournot and/or rational �rms are investigated analytically. The framework created by

Hommes, Ochea, and Tuinstra (2018) will be followed in order to do the analytics. Our con-

cern is, �rst of all, under what circumstances �rms may want to switch between behavioural

rules over time and second, once the Cournot-Nash equilibrium is reached whether all �rms

will keep producing the Cournot-Nash quantity or deviate.

Main �ndings are that, (i) in the case when Cournot �rms compete with imitators that

the threshold on the number of �rms that changes the system from stable to unstable is

7, (ii) when rational �rms compete with imitators, in the speci�c scenario of linear inverse

demand and constant marginal cost, the system is always stable regardless of the game and

behavioural parameters, (iii) in the case when rational �rms, Cournot �rms and imitators

compete, the stability depends on the evolutionary pressure and the the stability of the
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cheapest heuristic(s). When the cheapest behavioural rule is stable, the dynamics converge to

a situation where most �rms use this behavioural rule and all �rms produce the Cournot-Nash

equilibrium quantity. So having more information about the market does not necessarily lead

to higher pro�ts due to information costs. In the case when the cheapest heuristic is unstable,

complicated endogenous �uctuations may occur. In particular, when the evolutionary pressure

is high or when the number of �rms passes a certain threshold. Note that the nonlinearity

causing this erratic behaviour comes from the endogenously updating of the fractions, because

in our leading example the speci�cations were linear.

The remainder of this paper is organized as follows, in Section 2 the theoretical framework

is introduced, here the quantity and population dynamics will be explained extensively. In

Section 3 the dynamics will be investigated under exogenous population dynamics whereas

in Section 4 the stability of the system will be investigated under endogenous population

dynamics. In the �fth Section the results of section four are combined and the stability of

a system where rational, Cournot and imitators compete in one economy under endogenous

fraction dynamics is investigated. Finally, we conclude in Section 6.

2 Theoretical Framework

Consider a �nite population of �rms who are competing on the market for a certain good, each

discrete-time period all producers have to decide their production plans for the next period.

However, instead of simultaneously choosing the supplied quantities directly, the �rms act

according to behavioural rules that exactly prescribe the quantity to be supplied. Before the

evolutionary model is studied a brief review of the traditional, static Cournot model will be

given.

Consider a symmetric Cournot oligopoly game, where qi denotes the quantity supplied

by �rm i;where i = 1; :::n. Next to that let Q =
Pn

i=1 qi be the aggregated production.

Furthermore let P (Q) denote the twice di¤erentiable, nonnegative and non-increasing inverse
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demand function and let C(qi) denote the twice di¤erentiable non-decreasing cost function,

which is the same for all �rms. For �rm i the resulting pro�t function from the above described

model is given by

�i(qi; Q�i) = P (qi +Q�i)qi � C(qi); i = 1; :::n (1)

where Q�i =
P

j 6=i qj. Assume that the pro�t function of a �rm is strictly concave in its

own output qi. The pro�t maximizing strategy of �rm i, taking the quantity supplied by the

competitors as given, results in the well-known best-reply function for �rm i, which is given

by

qi = Ri(Q�i) = Argmax
qi

[P (qi +Q�i)qi � C(qi)]:

Due to symmetry, all �rms have the same best-reply function R(�). Moreover, the symmetric

Cournot-Nash equilibrium quantity q� corresponds to the solution of

q� = R((n� 1)q�):

Strict concavity of the pro�t function ensures that such a Cournot-Nash equilibrium exists.

For simplicity assume that q� is the unique symmetric Cournot-Nash equilibrium strategy.3

In this thesis focus lays on the following speci�cation of the Cournot oligopoly game which

will be called the leading example. This is the original speci�cation Theocharis (1960) used,

where inverse demand is linear and marginal costs are constant. The inverse demand and

cost function are given by

P (qi +Q�i) = a� b(qi +Q�i) and C(qi) = cqi; i = 1; :::n

respectively. First, in order to have a strictly concave pro�t function assume that b > 0.

Furthermore, for strictly positive prices assume that Q < a
b
. For these speci�cations of the

3The Cournot duopoly game may also have asymmetric Cournot-Nash equilibria, but they do not cor-
respond to equilibria of the evolutionary game when there is a single population. For the linear-quadratic
speci�cation of the Cournot oligopoly model speci�ed below, there can indeed be asymmetric boundary equi-
libria, but they do not in�uence the dynamics of the evolutionary model.
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inverse demand function and cost function the reaction function is given by

qi = R(Q�i) =
a� c

2b
� 1
2
Q�i = q� � 1

2
(Q�i � (n� 1)q�): (2)

Note that if the other �rms produce on average more (less) than the Cournot-Nash equilibrium

quantity, �rm i reacts by producing less (more) than that quantity.

Straightforward calculations show that in this case the Cournot-Nash equilibrium quantity,

aggregated production, price and pro�t are equal to q� = a�c
b(n+1)

, Q� = a�c
b

n
n+1
,

P � = a+nc
n+1

and �� = �(q�i ; Q
�
�i) =

(a�c)2
b(n+1)2

.

Traditional Cournot analysis refers to a static environment. However, in a dynamic setting

the reaction function introduced above can be used to study the so called Cournot-dynamics

where �rms best-reply to their expectations

qi;t = R(Qe�i;t); i = 1; :::n

where qi;t denotes the quantity supplied by player i in period t. The symmetric Cournot-Nash

equilibrium where all �rms produce q� is stable under the Cournot-dynamics if (n�1)jR0�)j <

1.

Main interest is on how �rm i decides to play q� and on top of that, what does �rm i

believe about Q�i when the production decision has to be made.

In the next Subsection the description of the quantity dynamics will be given. In Subsec-

tion 2.2 some local instability results for the general evolutionary system are discussed. In

Subsection 2.3 the population dynamics will be discussed.

2.1 Production plans

In the Cournot oligopoly game the producers have to form expectations about opponents�

production plans. Based on this expectation �rms decide how much to produce the next
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period. One approach is to assume complete information, i.e. rational �rms with common

knowledge of rationality. This implies that �rms have perfect foresight about competitors�

aggregated production plan, i.e. Qe�i;t+1 = Q�i;t+1: This results in the following production

plan:

qi;t+1 = R(Q�i;t+1); i = 1; :::n

Alternatively one may consider rules that require less information, for exampleQe�i;t+1 = Q�i;t:

This results in the following production plan:

qi;t+1 = R(Q�i;t); i = 1; :::n (3)

where �rms expect that aggregated production in the next period equals current aggregated

production. This is the so called Cournot adjustment heuristic.

It is a broadly supported idea that not all producers best-reply to their expectations.

Experiments (Huck, Normann, and Oechssler (2002)) show that people often imitate others�

behaviour. A heuristic that possibly seizes this production plan is the so called imitation-

heuristic. Imitators belief that �everyone else can�t be wrong�and will therefore produce the

average of the other players�production in the next period, i.e.

qi;t+1 =
Q�i;t
n� 1 ; i = 1; :::; n: (4)

Finally, Bosch-Domènech and Vriend (2003) test the importance of models of behaviour char-

acterised by imitation of successful behaviour, that is to imitate the quantity which the �rm

with the highest pro�t in the current period produced, i.e.

qi;t+1 = qj;t; i = 1; :::n; where �j;t =Maxf�1;t; :::;�k;tg:

They �nd that the players do not rely more on imitation of successful behaviour in more

demanding environments and explain the di¤erent output decisions as predominantly relate
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to a general disorientation of the players, and more speci�cally to a signi�cant decrease of

best responses.

In the next subsection we will investigate the dynamics under expectation rule (3) and (4)

in greater detail.

2.2 Instability threshold

2.2.1 Cournot adjustment heuristic

If all �rms use the Cournot adjustment heuristic (3), quantities evolve according to the fol-

lowing system of n �rst order di¤erence equations

q1;t+1 = R(q2;t + q3;t + : : :+ qn;t);

q2;t+1 = R(q1;t + q3;t + : : :+ qn;t);

=

qn;t+1 = R(q2;t + q3;t + : : :+ qn;t):

(5)

Local stability of the Cournot-Nash equilibrium depends on the eigenvalues of the Jacobian

matrix J of the system of equations (5), evaluated at that Cournot-Nash equilibrium q�. This

Jacobian matrix is given by

J jq� =

0BBBBBBB@

0 R0(Q��1) � � � R0(Q��1)

R0(Q��2) 0
...

...
. . . R0

�
Q��(n�1)

�
R0(Q��n) � � � R0(Q��n) 0

1CCCCCCCA
: (6)

Firms do not respond to their own previous production, therefore all diagonal elements are

equal to zero. All o¤-diagonal elements in row i are equal to R0(Q��i), since individual pro-

duction levels only enter through aggregate production of the other �rms. Moreover, at the
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symmetric Cournot-Nash equilibrium we have Q��i = (n � 1)q� for i = 1; :::; n, thus all o¤-

diagonal elements of (6) are equal to R0�). The Jacobian matrix (6) thus has n�1 eigenvalues

equal to �R0�) and one eigenvalue equal to (n� 1)R0�), which is the largest in absolute value.

From this it follows directly that the symmetric Cournot-Nash equilibrium is stable whenever

�(n) � (n� 1)jR0�)j < 1; (7)

where �(n) is de�ned as the largest eigenvalue of the Jacobian, evaluated at the equilibrium.

Leading example. From equation (2) it can easily be seen that R0(Q��i) = �1
2
, meaning

that if others�aggregated output increases by one unit, the Cournot-Nash �rms decrease their

output by 1
2
units. From stability condition (7) it follows that the Cournot-Nash equilibrium

is stable for this speci�cation only when n = 2 and unstable when n > 3 (and neutrally stable,

resulting in bounded oscillations, for n = 3). The reason for this instability is �overshooting�:

if aggregated output is above (below) the Cournot-Nash equilibrium quantity, �rms react by

reducing (increasing) their output. For n > 3 this aggregated reduction (increase) in output

is so large that the resulting deviation of aggregated output from the equilibrium quantity is

larger in the next period than in the current, and so on.

2.2.2 Imitation heuristic

If all �rms use the imitation heuristic (4), quantities evolve according to the following system

of n equations

q1;t+1 =
Q�1;t
n� 1 ;

q2;t+1 =
Q�2;t
n� 1 ;

=

qn;t+1 =
Q�n;t
n� 1 :

(8)
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Local stability of the Cournot-Nash equilibrium with only imitation �rms depends on the

eigenvalues of the Jacobian matrix of the system of equations (8) evaluated at that Cournot-

Nash equilibrium q�. This Jacobian matrix is given by

J jq� =

0BBBBBBB@

0 1
n�1 � � � 1

n�1

1
n�1 0

...
...

. . . 1
n�1

1
n�1 � � � 1

n�1 0

1CCCCCCCA
: (9)

Imitators only respond to other �rms�production and do not respond to their own produc-

tion, therefore all diagonal elements are equal to zero. If one competitor increases current

production by one unit, an imitator will increase next production with 1
n�1 unit, therefore all

o¤-diagonal elements are equal to 1
n�1 . The Jacobian matrix (6) thus has n � 1 eigenvalues

equal to � 1
n�1 and one eigenvalue equal to (n � 1)

1
n�1 = 1 which is the largest in absolute

value. Therefore it follows immediately that the Cournot-Nash equilibrium is neutrally stable

independent of n and system structure (price and cost function). The reason for this is that

if one producer changes his production plan the economy will stabilize to a new equilibrium

unequal to q� and will remain at this new equilibrium until one producer deviates again.

In fact this system has in�nitely many neutrally stable equilibria, namely if qi = qy 8i; the

system is neutrally stable for all qy.

2.3 Population dynamics

In the previous sections it is explained how the supplied quantities evolve over time under the

Cournot and the imitation heuristic. In this section it will be explained how the population

fractions evolve over time. Let us �rst introduce the vector �t which has entries equal to �k;t,

which is the fraction of the population that uses heuristic k at time t. Thus for every time

t, �t denotes the K-dimensional vector of fractions for each strategy/heuristic and belongs to

the K-dimensional simplex �K = f�t 2 RK :
PK

k=1 �k;t = 1; 0 � �k;t � 1 8kg. We will now
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describe how the fractions �k;t evolve over time. It is assumed that the choice of a behavioural

rule is based on its past performance, capturing the idea that more successful rules will be

used more frequently.

Evolutionary game theory deals with games played within a (large) population over a

long time horizon. Its main ingredients are its underlying game, in this thesis the Cournot

one-shot game, and the evolutionary dynamic class which de�nes a dynamical system on the

state of the population. The evolutionary dynamical system depends on current fractions �t

and current �tness Ut. In general, such an evolutionary dynamic in discrete time, describing

how the population fractions evolve, is given by

�k;t+1 = K(Ut; �t) (10)

with Ut = (U1;t; :::; UK;t)0 the vector of average utilities and �t = (�1;t; :::; �K;t)0 the factor of

fractions. To make sure that the population dynamics is well-behaved in terms of dynamic

implications we assume that K(�; �) is continuous, nondecreasing in Uk;t, and such that the

population state remains in the K-dimensional unit simplex �K . In the next Subsection lead-

ing class of population dynamics will be explained in detail, the Logit evolutionary dynamics.

2.3.1 Discrete choice models - the Logit evolutionary dynamics

The Logit evolutionary dynamic is treated extensively in Brock and Hommes (1997). This

Section contains a brief discussion.

In order to update the fractions we assume that average utility of all heuristics is publicly

observable. Suppose that the observed average utility associated behavioural rule Hk takes

the form

~Uk = Uk +
1

�
�k;

where �k�s are IID. This captures the idea of bounded rationality since individuals do not
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necessarily select the rule that yields the highest utility. The parameter � represents the

evolutionary pressure. Notice that in the extreme case where � = 0 we have completely ran-

dom behaviour: the noise is so large that observed average utility is equal for all behavioural

rules. Each behavioural rule is thus chosen with equal probability: �k;t = 1
K
8k. In the other

extreme case, when � !1 obscures and everybody switches to the most pro�table strategy

each period. If the noise terms �k�s are distributed according to the extreme value distribu-

tion the evolutionary fraction dynamic results in the so-called multinomial Logit evolutionary

dynamic, the following updating dynamic is given by

�k;t+1 =
e�Uk;t

KX
j=1

e�Uj;t

; k = 1; :::; K: (11)

The equilibrium fractions are given by

�k;t+1 =
e�(�

��Tk)

KX
j=1

e�(�
��Tj)

; k = 1; :::; K (12)

In case of equal costs of the heuristics, equilibrium fractions are thus given by ��k =
1
K
8k,

since production is equal and thus pro�ts are equal. Note that the population dynamics

remains in the interior of the unit simplex for �nite �. This implies that in each time period

all behaviour rules are present in the population and no behavioural rule will ever vanish (this

is the so-called no-extinction condition). Furthermore, no new behavioural rules emerge from

this model (this is the so-called no-creation condition).

In the leading examples we will focus on the Logit evolutionary dynamics. First of all be-

cause this dynamic is also used in Hommes, Ochea, and Tuinstra (2018) and therefore creates

the possibility to make a good comparison and furthermore because the Logit evolutionary

dynamic has by de�nition nice regularity/continuity conditions (0 � �k � 1).
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3 Heterogeneity in behaviour in Cournot oligopolies

In this Section we study the Cournot game and introduce heterogeneity in production plans.

In this Section we focus on competition between two heuristics. We relax this in Section

�ve, where we study the competition between rational, Cournot and imitation �rms. First

we study competition between the Cournot and the imitation �rms, with this as an example,

two theories will be presented on how to model this heterogeneity in production. In the �rst

theory the �rms select their heuristic that completely describes how much to supply in the

next period. They select heuristic k with probability �k. In the second theory n �rms are

randomly picked from a large population of �rms in which a fraction �k plays according to

strategy k. Main di¤erence is that the �rms observe under the second theory more outcomes

and thus under the law of large numbers lets the production plans within a heuristic converge

whereas in the �rst theory all �rms (even the �rms using the same heuristic) have di¤erent

production plans, making the dynamics analytically untractable. After this extensive study of

competition between Cournot �rms and imitators, we introduce another model where rational

�rms compete with imitation �rms. Since the dynamics are only tractable under theory 2,

we will focus on this theory when studying this model. The assumption of �xed � for each

period will be relaxed in section 4.

3.1 Cournot vs. Imitation �rms

3.1.1 Theory 2: A large population game

In order to facilitate studying the aggregate behaviour of a heterogeneous set of interacting

quantity-setting-heuristics we study the Cournot model as a population game. Consider a

large population of �rms from which in each period groups of n �rms are sampled randomly

and matched to play the one-shot n-player Cournot game. We assume that a �xed fraction of

� of the large population of �rms uses the Cournot heuristic and the others use the imitation

heuristic. After each one-shot Cournot game, the random matching procedure is repeated,
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leading to new combinations types of �rms. The distribution of possible samples follows a

binomial distribution with parameters n; and �. Below the example Cournot vs. Imitation

�rms will be discussed again but now under theory 2 of random matching.

Suppose that a fraction of � of the population of the �rms uses the Cournot heuristic and

observes the population-wide average quantity �qt and best responds to it, qCt+1 = R((n�1)�qt),

where qCt is the quantity produced by each Cournot �rm in period t. Consequently a fraction

of � �rms of the large population makes use of the the imitation heuristic. Making use of the

law of large numbers, the average quantity played in period t can be expressed as

�qt = �qCt + (1� �)qIt :

Remember that imitation �rms produce in the next period the by the other �rms average

produced quantity in the current period qIi;t+1 =
Q�i;t
n�1 . Again by a law of large numbers we

obtain Q�i;t
n�1 ! �qtwhen n !1. Therefore we obtain the following quantity dynamics

qCt+1 = R((n� 1)(�qCt + (1� �)qIt ))

qIt+1 = �qCt + (1� �)qIt :

(13)

Note that this is a 2-dimensional dynamical system which dimension cannot be reduced.

Furthermore the Cournot-Nash equilibrium is not the unique equilibrium of the imitation

rule, in fact all quantities are. The Cournot-Nash equilibrium is, however, still the unique

equilibrium quantity of the complete dynamical system.

Proposition 1 The Cournot-Nash equilibrium,where all �rms produce the Cournot-Nash

quantity (q�; q�), is a locally stable �xed point for the model with exogenous fractions of

Cournot and imitation �rms if and only if

j1� � + �(n� 1)(R0�)j < 1: (14)
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Proof. It can easily be shown that the Jacobian matrix, evaluated at the Cournot-Nash

equilibrium (q�; q�), is given by

0BBBB@
(n� 1)�R0�) (n� 1)(1� �)R0�)

� 1� �

1CCCCA : (15)

The corresponding eigenvalues are �1 = 0 and �2 = 1 � � + �(n � 1)(R0�). Here �2 is the

largest eigenvalue in absolute value. Thus the system is stable if j�2j < 1, this is the condition

stated in the proposition.

Leading example. Here R0�) = �1
2
substituting this in equation (14) gives, after some

simpli�cation

n <
4� �

�
: (16)

Meaning that an economy with as much Cournot �rms as imitators(� = 1
2
) is stable if n < 7.

Next to that as found earlier, an economy with only cournot �rms (� = 1) is stable if n <

3. Furthermore, an economy where close to all �rms use the imitation heuristic, but some

Cournot �rms exist (� close to zero), the economy is always stable.

3.2 Rational vs. Imitation �rms

In this section we focus on the dynamics when there is competition between rational and

imitation �rms. Remember that we will model this heterogeneity under theory 2 since this

makes the dynamics analytically tractable. We set the fraction of rational �rms equal to �.

A fully rational �rm is assumed to know the fraction of imitation �rms. Moreover, it knows

exactly how much all �rms will produce. However, we assume that it does not know the

composition of �rms in its market (or has to make a production decision before observing
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this). The rational quantity dynamics therefore have the following structure

qR = Argmax
qi

E[P (qi +Q�i)qi � C(qi)]:

It forms expectations over all possible mixtures of heuristics resulting from randomly drawing

n � 1 other players from a large population, of which each with chance � is a rational �rm

too, and with chance 1� � is an imitator. Rational �rm i therefore chooses quantity qi such

that his objective function, its own expected utility

URt (qi;tjqRt ; qIt ; �) =
n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�k[P ((n�1�k)qIt +kqRt +qt;i)qt;i�C(qt;i)]; (17)

is maximized given the production of the other players and the population fractions. Here qRt

is the symmetric output level of all of the other rational �rms in period t, and qIt is the output

level of all of the imitation �rms. The �rst order condition for an optimum is characterized

by equality between marginal cost an expected marginal revenue. Typically, marginal revenue

in the realized market will di¤er from marginal costs.

Given the value of qIt and the fraction �, all rational �rms coordinate on the same output

level qRt . This gives the �rst order condition

�URt (qi;tjqRt ; qIt ; �)
�qi;t

= 0;

which equals to:

n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�k�

[P ((n� 1� k)qIt+(k + 1)q
R
t ) + qRt P

0((n� 1� k)qIt + (k + 1)q
R
t )� C 0(qRt )] = 0:

(18)

Let the solution to equation (18) be given by qRt = HR(qIt ; �), the full system of equations is
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thus given by

qRt+1 = HR(qIt+1; �) = HR(�qRt + (1� �)qIt ; �)

qIt+1 = �qRt + (1� �)qIt :

(19)

It is easily checked that if the imitators play the Cournot-Nash equilibrium quantity q�, or if

all �rms are rational, the rational �rms will play the Cournot-Nash equilibrium quantity, that

is HR(q�; �) = q�, for all � and HR(qI ; 1) = q� for all qI . Moreover, if a rational �rm is certain

it will only meet imitation �rms (that is � = 0), it plays a best response to the currently

average played quantity, that is HR(qIt ; 0) = R((n� 1)qIt ), for all qIt . In the remainder we will

denote the partial derivatives of HR(q; �) with respect to q and � by HR
q (q; �) and H

R
� (q; �)

respectively.

Proposition 2 The Cournot-Nash equilibrium, where all �rms produce the Cournot-Nash

quantity (q�; q�), is a locally stable �xed point for the model with exogenous fractions of rational

and imitation �rms if and only if

j�Hq(q�; �) + 1� �j < 1 (20)

Proof. In order to determine the local stability of the equilibrium (q�; q�) where all �rms

produce the Cournot-Nash quantity, we need to determine the eigenvalues of the Jacobian

matrix of system (19), evaluated at the equilibrium. It can be shown that this Jacobian

matrix is given by

J jq�;q� =

0B@�Hq(q
�; �) (1� �)Hq(q

�; �)

� 1� �

1CA ; (21)

which has eigenvalues �1 = �Hq(q
�; �)+ 1� � and �2 = 0. Consequently the system is locally

stable when j�1j < 1, this is exactly the condition stated.

Leading example. In the leading example the implicit function de�ning qRt (Eq. (18)) when
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using that

n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�k = 1 and

n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�kk = (n� 1)�

boils down to

qRt+1 = HR(qIt+1; �) =
a� c

b(2 + (n� 1)�) �
(n� 1)(1� �)

2 + (n� 1)� (�q
R
t + (1� �)qIt ):

The system of equations for the leading example is given by

qRt+1 = HR(qIt+1; �) =
a� c

b(2 + (n� 1)�) �
(n� 1)(1� �)

2 + (n� 1)� (�q
R
t + (1� �)qIt )

qIt+1 = �qRt + (1� �)qIt

(22)

The eigenvalues of this system are given by �1 = 0 and �2 = 1 � � � (n�1)(1��)�
2+(n�1)� , thus the

system is stable if j�2j < 1. Since 0 � (n�1)(1��)�
2+(n�1)� < 1; this stability condition always holds

and the economy is always stable in the linear speci�cation.

In Figure 1 this is graphically shown.
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Figure 1: Largest eigenvalue for the model rational vs. imitation �rms. The largest eigen-
value decreases when the number of �rms increases and when the fraction of rational players
increases. Since an economy consisting of only imitation �rms is neutrally stable, this model
is stable for all combinations of � and n.
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4 Evolutionary competition between two heuristics

In this Section we develop an evolutionary version of the model outlined in Section 3, i.e.

relaxing the assumption that � is �xed. As before in ever period t, n �rms play the n-player

Cournot game. We now assume that the fractions of �rms using a heuristic � evolves over

time according to a general monotone selection dynamic, capturing the idea that heuristics

that perform relatively better are more likely to spread through the population as explained

in Section 2.3, Eq. (10), here it is explained that future fractions depend on current fractions

and current �tness.

Under the assumption of random interactions, the �tness of heuristic k is determined

by averaging the payo¤s from from each interaction with weights given by the chance of

that speci�c state minus the information cost of using the heuristic. Denoting with �t the

expected payo¤ vector in period t, its entries - individual payo¤ or �tness in biological terms

- of strategy 1 is given by:

�1;t = F (q1;t; q2;t; �t) =

n�1X
k=0

(n� 1)!
k!(n� 1� k)!

�kt (1� �t)
n�1�kP ((k + 1)q1;t + (n� 1� k)q2;t)q1;t � C(q1;t); (23)

and with expected pro�ts for heuristic 2 given by �2 = F (q2; q1; 1 � �). If the population

of �rms and the number of groups of n �rms drawn from that population are large enough,

average pro�ts will be approximated well by these expected pro�ts, which we will use therefore

as a proxy for average pro�ts from now on.

There might be a substantial di¤erence in sophistication between di¤erent heuristics. As

a consequence some heuristics may require more information or e¤ort to implement than

others. Therefore we allow for the possibility that heuristics involve information cost Ck � 0,

that may di¤er across heuristics. Fitness of a heuristic is then given by the average pro�ts

generated in the game minus the information costs, Uk = �k � Ck. We only use the realized
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pro�t to determine the �tness measure of a behavioural rule. The �tness measure can be

generalized by weighting the utility of the past M periods, yielding similar results (Tuinstra

(1999)). We assume that the above �tness measures Uk are publicly observable.

Having the �tness measure we are ready to introduce the population dynamics. Let the

fraction of �rms using the �rst heuristic be given by � in period t. This fraction evolves

endogenously according to an evolutionary dynamic which is an increasing function in the

di¤erence between the current �tness of the two heuristics and current fraction, that is

�t+1 = K(U1;t � U2;t) = K(�U1;t):

The map K : R ! [0; 1] is a continuously di¤erentiable, monotonically increasing func-

tion with K(0) = 1
2
, K(x) + K(�x) = 1, meaning that it is symmetric around x = 0,

limx!�1K(x) = 0 and limx!1K(x) = 1

In the following two sections we will derive two dynamical versions of the two models

discussed in Section 3 and investigate their stability. First we investigate the stability of the

Cournot-Nash equilibrium for the model with endogenous fractions of Cournot and imitation

�rms and second we investigate the stability of the Cournot-Nash equilibrium for the model

with endogenous fractions of rational and imitation �rms.

4.1 Cournot versus Imitation �rms

The dynamics in this section consists of three equations, two equations describing the quantity

dynamics: the production of the Cournot �rms and the production of the imitation �rms.

Next to that we need one equation to describe the dynamics of the population fraction. The

population and quantity dynamics look like the following system of three equations:
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qCt+1 = R((n� 1)(�tqCt + (1� �t)q
I
t ));

qIt+1 = �tq
C
t + (1� �t)q

I
t

�t+1 = K(�Ut);

(24)

where�Ut = UC;t�UI;t: Note that this is a 3-dimensional dynamical system which dimensions

cannot be reduced. Furthermore, the Cournot-Nash equilibrium quantity q� is the unique

equilibrium quantity of the complete dynamical system. Let �� be the unique equilibrium

fraction such that �� = K(�C). Without specializing the population dynamics K(�) we have

the result as stated in the proposition below.

Proposition 3 The Cournot-Nash equilibrium (q�; q�; ��) is a locally stable �xed point for

the model with endogenous fractions of Cournot and imitators where all �rms produce the

Cournot-Nash quantity, �rms if and only if

��R((n� 1)q�)(n� 1)� �� > �2: (25)

Proof. It can easily be shown that the Jacobian matrix of system 24, evaluated at the

equilibrium (q�; q�; ��) is given by

J jq�;q�;�� =

0BBBB@
(n� 1)��R0�) (n� 1)(1� ��)R0�) 0

�� 1� �� 0

J31 J32
�K(�Ut)
��t

���
q�;q�;��

1CCCCA : (26)

The eigenvalues of this Jacobian matrix are, independently of J31 and J32 given by

�1 = ��R((n� 1)q�)(n� 1) + �� � 1; �2 =
�K(�Ut)

��t

����
q�;q�;��

and �3 = 0: (27)
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To our best knowledge of possible population dynamics �K(�Ut)
��t

is positive but smaller than

1. This holds for all population dynamics discussed in Section 2.3. Therefore, for the system

to be stable we need

��R((n� 1)q�)(n� 1)� �� > �2;

which is exactly the condition stated in the proposition.

Note that this is the same condition we derived in Section 3.1.1 where we �xed �.

Leading example. In the equilibrium, when all �rms produce the same quantity, pro�ts

are equal and therefore the equilibrium fraction simpli�es to �� = K(�C). The equilibrium

quantities are given by q�. Here R0�) = �1
2
, �lling this in equation (25) gives the stability

condition for the leading example. Thus the equilibrium (q�; q�; ��) is stable when n < 4���
�� .

In Figure 2 the model is simulated under Logit-dynamics with intensity of choice parameter

�, see Brock and Hommes (1997). Panel (a) depicts a period-doubling route to chaotic

quantity dynamics as the number of �rms n increases. The �rst period-doubling bifurcation

is for n = 7 as calculated analytically. Panel (b) displays oscillating time series of produced

quantity by the Cournot and imitation �rms and the equilibrium quantity fraction q�. As

one can see the Cournot quantities are �uctuating more than the imitation quantities. The

stabilizing e¤ect of the imitation �rms is here clearly visible, when Cournot �rms produce

more (less) then the Cournot-Nash equilibrium quantity, the imitation �rms produce less

(more) than the Cournot-Nash equilibrium quantity and therefore decrease the aggregated

deviation from the equilibrium. Panel (c) displays the resulting Cournot pro�t di¤erential

�C ��I . Panel (d) displays the resulting oscillating time series of the Cournot and imitation

fractions. In Panel (e) a phase portrait is shown for the Cournot heuristic whereas in Panel

(f) a phase portrait for the imitation heuristic is shown. In Panel (g) the largest Lyapunov

exponent for an increasing number of �rms is shown. Game and behavioural parameters are

equal set to: n = 10, a = 17, b = 1, c = 1, CC = 0, CI = 0, � = 0:05. Initial conditions

are set equal to: qC0 = 0:8, qI0 = 0:8, �0 = 0:5 When the evolutionary pressure increases,

the system evolves to an equilibrium di¤erent from the Cournot-Nash equilibrium where the
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imitation �rms produce more than the Cournot-Nash equilibrium whereas the Cournot �rms

produce less. Imitation pro�ts are therefore much higher and as a consequence the complete

population switches to the imitation heuristic.

(a) Bifurcation diagram
(qt; n)

(b) Time path of Cournot
and imitiation quantities

(c) Cournot pro�t
di¤erential

(d) Time path Cournot
fraction

(e) Cournot phase plot (f) Imitation phase plot

Figure 2: Linear n-player Cournot game with endogenous fraction dynamics.

The bifurcation diagram is re-plotted in Fig. 3 under the same game and behavioural

parameters and initial conditions, the only di¤erence is that now � = 3.
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Figure 3: Bifurcation diagram (qt; n) with � = 3

When 1:7 < n < 2:8 the imitation �rms produce more then the Cournot-Nash equilibrium

quantity while the Cournot �rms produce less. This results in higher pro�ts for the imitators

and therefore the complete populations switches to imitators (� = 0). When 2:8 � n �

3:2 all �rms produce the Cournot-Nash equilibrium quantity again, therefore pro�ts and

thus fractions are equal. When n > 3:2 The imitation �rms produce again more then the

equilibrium quantity while the Cournot �rms produce less, exept when n is close to 3.65, then

all �rms produce the Cournot-Nash equilibrium quantity. Finally, when n > 5:6 the imitation

�rms produce so much that the Cournot �rms decide to produce nothing (qC = 0).

4.2 Rational vs. Imitation �rms

As in the previous Section we need a 3-dimensional system to describe the dynamics of the

model. The rational �rms produce each period such that their expected pro�t is maximized

whereas an imitator produces in the next period the currently average played quantity.

The rational quantity dynamics therefore have the following structure

qRt = Argmax
qi

E[P (qi;t +Q�i;t)qi � C(qi;t)]:

It forms expectations over all possible mixtures of heuristics resulting from randomly drawing
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n � 1 other players from a large population, of which each with chance �t is a rational �rm

too, and with chance 1 � �t is a imitator. Rational �rm i therefore chooses quantity qi such

that his objective function, its own expected utility

URt (qi;tjqRt ; qIt ; �t) =
n�1X
k=0

�
n� 1
k

�
�kt (1� �t)

n�1�k[P ((n�1�k)qIt+kqRt +qt;i)qt;i�C(qt;i)]; (28)

is maximized given the production of the other players and the population fraction. Here qRt

is the symmetric output level of each of the other rational �rms in period t, and qIt is the

output level of each of the imitator �rms in period t. The �rst order condition for an optimum

is characterized by equality between marginal cost an expected marginal revenue.

Given the value of qIt and the fraction �t, all rational �rms coordinate on the same output

level qRt . This gives the �rst order condition

�URt (qi;tjqRt ; qIt ; �t)
�qi;t

= 0;

which equals to

n�1X
k=0

�
n� 1
k

�
�kt (1� �t)

n�1�k�

[P ((n� 1� k)qIt+(k + 1)q
R
t ) + qRt P

0((n� 1� k)qIt + (k + 1)q
R
t )� C 0(qRt )] = 0:

(29)

Let the solution to equation (29) be given by qRt = HR(qIt ; �t), the full system of equations is

thus given by

qRt+1 = HR(qIt+1; �t+1)

qIt+1 = �tq
R
t + (1� �t)q

I
t

�t+1 = K(�Ut):

(30)

where �Ut = URt � U It . It is easily checked that if the imitators play the Cournot-Nash
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equilibrium quantity q�, or if all �rms are rational, then the rational �rms will play the

Cournot-Nash equilibrium quantity, that is HR(q�; �) = q�, for all � and HR(qI ; 1) = q� for

all qI . Moreover, if a rational �rm is certain it will only meet imitation �rms (that is � = 0), it

plays a best response to the currently average played quantity, that isHR(qIt ; 0) = R((n�1)qIt ),

for all qIt . In the remainder we will denote the partial derivatives of H
R(q; �) with respect to

q and � by HR
q (q; �) and H

R
� (q; �) respectively.

Proposition 4 The Cournot-Nash equilibrium (q�; q�; ��) is a locally stable �xed point for

the model with endogenous fractions of rational and imitation �rms, where all �rms produce

the Cournot-Nash quantity, if and only if

j��Hq(q
�; ��) + 1� ��j < 1 (31)

Proof. Since a dynamical system can only depend on lagged variables, we substitute the

second and third equation into the �rst. This gives us the following system that depends only

on lagged variables.

qRt+1 =  1 = HR(�tq
R
t + (1� �t)q

I
t ; K(�U

R
t ))

qIt+1 =  2 = �tq
R
t + (1� �t)q

I
t

�t+1 =  3 = K(�URt ):

(32)

In the equilibrium all �rms produce the Cournot-Nash quantity q�, therefore pro�ts are equal,

hence the equilibrium fraction is given by �� = K(�C). In order to determine the local

stability of the equilibrium (q�; q�; ��) where all �rms produce the Cournot-Nash quantity, we

need to determine the eigenvalues of the Jacobian matrix of system (19), evaluated at the

equilibrium.

The partial derivatives of  2 with respect to qRt , q
I
t and �t, evaluated at the equilibrium

are ��, 1� �� and 0 respectively.
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Next, let us determine the partial derivatives of  3 with respect to qRt , q
I
t and �t, respect-

ively. To that end, note that we can write the pro�t di¤erential as

�URt = �
R
t � �It � C =

n�1X
k=0

Ak(�t)Dk(q
R
t ; q

I
t ; �t)� C;

with Ak(�t) =
�
n�1
k

�
�kt (1� �t)

n�1�k, which does not depend upon qR and qI , and

Dk(q
R
t ; q

I
t ; �t) =P ((k + 1)q

R + (n� 1� k)qI)qR � C(qR)

� [P (kqR + (n� k)qI)qI � C(qI)];

(33)

which depends upon �t through qRt = H(qIt ; �t). Note that Dk(q
R
t ; q

�; �t) = 0, moreover the

partial derivatives of Dk(q
R
t ; q

I
t ; �t), evaluated at the equilibrium (q�; q�; ��) are given by

�Dk(q
R
t ; q

I
t ; �t)

�qRt

����
(q�;q�;��)

= [P 0�)q� + P (Q�)� C 0�)]Hq(q
�; ��) = 0;

�Dk(q
R
t ; q

I
t ; �t)

�qIt

����
(q�;q�;��)

= �[P 0�)q� � P (Q�) + C 0�)] = 0;

�Dk(q
R
t ; q

I
t ; �t)

��t

����
(q�;q�;��)

= [P 0�)q�P (Q�)� C 0�)]H�(q
�; ��) = 0:

The second equalities follows from the fact that P 0�)q� + P (Q�) � C 0�) = 0 is the �rst order

condition of any �rm in a Cournot-Nash equilibrium. Furthermore Dk(q
�; q�; �) = 0 for all �

by the �rst order condition for a Cournot-Nash equilibrium. Using this it follows immediately

that:

� 3

�qRt

����
(q�;q�;��)

= K 0(�C) ��Ut
�qRt

����
(q�;q�;��)

= K 0(�C)
n�1X
k=0

Ak(�
�)
�Dk(q

R
t ; q

I
t ; �t)

�qRt

����
(q�;q�;��)

= 0

(34)
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and

� 3

�qIt

����
(q�;q�;��)

= K 0(�C) ��Ut
�qIt

����
(q�;q�;��)

= K 0(�C)
n�1X
k=0

Ak(�
�)
�Dk(q

R
t ; q

I
t ; �t)

�qIt

����
(q�;q�;��)

= 0

(35)

and

� 3

��t

����
(q�;q�;��)

= K 0(�C) ��Ut
��t

����
(q�;q�;��)

= K 0(�C)
n�1X
k=0

[Ak(�
�)
�Dk(q

R
t ; q

I
t ; �t)

��t

����
(q�;q�;��)

+
�Ak(�)

��t
Dk(q

R� ; qI
�

t ; �
�)]

= 0:

(36)

This leaves us to examine the partial derivatives of  1 with respect to qRt , q
I
t and �t,

evaluated at the equilibrium.

� 1

�qRt

����
(q�;q�;��)

= ��HR
q (q

�; ��) +
�K(�Ut)

�qRt
H�(q

�; ��)

= ��HR
q (q

�; ��)

(37)

and

� 1

�qIt

����
(q�;q�;��)

= (1� ��)HR
q (q

�; ��) +
�K(�Ut)

�qIt
H�(q

�; ��)

= (1� ��)HR
q (q

�; ��)

(38)

and
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� 1

��t

����
(q�;q�;��)

= (q� � q�)HR
q (q

�; ��) +
�K(�Ut)

��t
H�(q

�; ��)

= 0

(39)

Therefore the Jacobian matrix, evaluated at the equilibrium is given by

J jq�;q�;�� =

0BBBB@
��HR

q (q
�; ��) (1� ��)HR

q (q
�; ��) 0

�� 1� �� 0

0 0 0

1CCCCA : (40)

Which has eigenvalues �1 = �Hq(q�; ��) + 1 � ��, �2 = 0 and �3 = 0. Consequently the

system is locally stable when j�1j < 1, this is exactly the condition stated in proposition 4.

Note again the similarity with the condition in Section 3 where we �xed the fraction �.

Leading example. Since the stability condition is the similar to the condition derived in

Section 3.2, the equilibrium (q�; q�; ��) is stable for all n in this linear speci�cation.

5 Rational vs. Cournot vs. Imitation

In this section we combine the ideas that we gathered in Section 4. We will investigate the

dynamics when the three heuristics discussed before compete. As before every round n �rms

are drawn from a large pool of �rms to play the one-shot Cournot game. From this large pool

of �rms a fraction �Rt plays according to the rational strategy in period t, a fraction �
C
t plays

according to the Cournot heuristic in period t and consequently the fraction of imitators in

period t is determined by 1��Rt ��Ct . As in Section 4 the �tness of a heuristic is determined by

the average payo¤minus the information cost of using that heuristic. Again the average pro�ts

will be approximated by the expected pro�ts but in contrast to Section 4 the distribution of

states now follows a multinomial distribution instead of a binomial distribution. In general
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the average pro�t of a �rm producing q1 and competing with other �rms that produce either

q2 or q3 given the fractions �1 and �2 is stated below, in this average pro�t approximation the

pro�t in each state is weighted by the chance of this state.

�1;t = F (q1;t; q2;t; q3;t; �1;t; �2;t) =X
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�k11;t�
k2
2;t(1� �1;t � �2;t)

n�k1�k2�1� (41)

P ((k1 + 1)q1;t + k2q2;t + (n� 1� k1 � k2)q3;t)q1;t � C(q1;t);

The summation is over all possible combinations of k1 and k2, which stand for the number

of other �rms producing q1 and q2 respectively, that is: � = fk1; k2 2 I2 : 0 � k1 �

n � 1; 0 � k2 � n � 1; 0 � k1 + k2 � n � 1g: Expected pro�ts for heuristic 2 in period t

are given by F (q2;t; q1;t; q3;t; �2;t; �1;t), expected pro�ts for heuristic 3 in period t are given by

F (q3;t; q2;t; q1;t; 1� �1;t � �2;t; �2;t).

The complete dynamical system consists of �ve equations, three for the quantity dynam-

ics and two to describe how the fractions evolve. As in all previous sections, the Cournot

�rms play in the next period a best-response to the current aggregated output of the others,

imitators play in the next period the average produced quantity by the others in the current

period. Rational players produce every period the quantity that maximizes expected payo¤

given the fractions and production plans of all other �rms (imitators, Cournot players but

rational players too). The rational �rms produce expectations over all possible mixtures of

heuristics resulting from randomly drawing the n� 1 other players from the large population

of �rms. In this setting the rational objective function, its own expected utility is of the

following form:

URt (qi;tjx) =
X
�

fk1;k2(n� 1; �R; �C)�

P (k1q
R
t + k2q

C
t + (n� 1� k1 � k2)q

I
t + qi;t)qi;t � C(qi;t);

(42)
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with fk1;k2(n�1; �R; �C) =
(n�1)!

k1!k2!(n�k1�k2�1)!�
R
t
k1�Ct

k2(1��Rt ��Ct )n�k1�k2�1 and x = qRt ; q
I
t ; q

C
t ; �

R
t ; �

C
t .

The �rst order condition for an optimum of (42) is characterized by equality between marginal

cost an expected marginal revenue.

Given the value of qCt qIt �
R
t �Ct , all rational �rms coordinate on the same output level q

R
t .

Di¤erentiating equation (42) with respect to qi;t gives the �rst order condition, which is equal

for all rational �rms. This �rst order condition is given by:

�URt (qi;tjx)
�qi;t

= 0

which equals to:

X
�

fk1;k2(n� 1; �R; �C)�

[P ((k1 + 1)q
R
t + k2q

C
t + (n� 1� k1 � k2)q

I
t )+

P 0((k1 + 1)q
R
t + k2q

C
t + (n� 1� k1 � k2)q

I
t )q

R
t � C 0(qRt )] = 0 (43)

Let the solution to this be given by qRt = HR(qCt ; q
I
t ; �

R
t ; �

C
t ). The system of quantity dynamics

is thus given by

qRt+1 = HR(qCt+1; q
I
t+1; �

R
t+1; �

C
t+1)

qCt+1 = R((n� 1)(�Rt qRt + �Ct q
C
t + (1� �Rt � �Ct )q

I
t )

qIt+1 = �Rt q
R
t + �Ct q

C
t + (1� �Rt � �Ct )q

I
t

(44)

Note that rational player plays such that expected marginal revenue equals marginal cost at

t + 1 and a Cournot �rm plays such that its marginal revenue (of period t) equals marginal

cost (at period t). Therefore the Cournot heuristic is a lagged version of the rational heuristic
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if and only if

P 0RqR + �CqC + (1� �R � �C)qI) + qC) =X
�

fk1;k2(n� 1; �R; �C)P 0((k1 + 1)qR + k2q
C + (n� 1� k1 � k2)q

I): (45)

Thus the Cournot heuristic is only a lagged version of the rational heuristic if the inverse

demand is linear. In this speci�c case the analysis become easier because this gives the

possibility to lower the dimension of the dynamical system.

It is easily checked that if the imitation and Cournot �rms play the Cournot-Nash equilib-

rium quantity q�, or if all �rms are rational, the rational �rms will play the Cournot-Nash equi-

librium quantity, that isHR(q�; q�; �Rt ; �
C
t ) = q�, for all �R and �C andHR(qCt+1; q

I
t+1; 1; 0) = q�

for all qC , qI . In the remainder we will denote by HR
qR , H

R
qC , H

R
qI , H

R
�R and H

R
�C the partial

derivatives of HR(qC ; qI ; �R; �C) with respect to qR, qC , qI , �R and �C respectively, evaluated

at the equilibrium (q�; q�; q�; �R
�
�C

�
), which we will denote by x� in the remainder of this

chapter for notational convenience.

Now that we have the quantity dynamics we can turn to the population dynamics. These

are related to the population dynamics from Section 4 but di¤er signi�cantly since we are

in a three heuristic environment now. The population dynamics, as in Section 4, depend on

relative �tness. Let the fraction dynamics be given by

�R;t+1 = KR(�URt ;�U
C
t )

�C;t+1 = KC(�URt ;�U
C
t ):

(46)

Where �Rt+1is the fraction of rational �rms in period t+1 whereas �
C
t+1 is the fraction of Cournot

�rms in that period. With �URt = �
R
t �CR� (�Ct �CC) we denote the di¤erence in average

�tness of the rational and the Cournot heuristic and with �UCt = �
C
t � CC � (�It � CI) we

denote the di¤erence in average �tness of the Cournot and the imitation heuristic. Note that

KR and KC are R2 ! [0; 1] are continuously di¤erentiable functions where the di¤erence in
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�tness of the rational and Cournot heuristics and the di¤erence in �tness of the Cournot and

imitation heuristic are used as input. The di¤erence in �tness of the rational and imitation

heuristic is not used as an input variable since this information is captured implicitly in the

other two di¤erences. Note that KR is a monotonically increasing function in the �rst and

second element whereas KC is decreasing in the �rst element but increasing in the second

element. Furthermore, KR(0; 0) = KC(0; 0) = 1
3
. In the remainder of this chapter we denote

KR
1 and K

R
2 the partial derivatives of K

R with respect to the �rst and the second element

respectively and with KC
1 and K

C
2 the partial derivatives of K

C with respect to the �rst and

the second element respectively.

Now that we have the quantity and population dynamics, we know the full system of

equations. The full system is given by:

qRt+1 = �1 = HR(�2; �3; �4; �5)

qCt+1 = �2 = R((n� 1)(�Rt HR(qCt ; q
I
t ; �

R
t ; �

C
t ) + �Ct q

C
t + (1� �Rt � �Ct )q

I
t )

qIt+1 = �3 = �Rt q
R
t + �Ct q

C
t + (1� �Rt � �Ct )q

I
t

�Rt+1 = �4 = KR(�URt ;�U
C
t )

�Ct+1 = �5 = KC(�URt ;�U
C
t ):

(47)

Since a dynamical system can only depend on lagged variables we substituted �2; �3; �4; �5

into HR(�). In order to determine the local stability of the unique equilibrium x�, we need to

determine the eigenvalues of the Jacobian matrix evaluated at that equilibrium x�.

It can easily be shown that the partial derivatives of �3 with respect to qR, qC , qI , �R and

�C , evaluated at the equilibrium are �R
�
, �C

�
, 1� �R

� � �C
�
, 0 and 0 respectively.

To determine the partial derivatives of �4 and �5 we need to determine the partial deriv-

atives of �URt and �U
C
t . In accordance to Section 4.2 we can write the �rst pro�t di¤erential

as

�UR =
X
�

Ak(�
R; �C)Dk(q

R
t ; q

C
t ; q

I
t ; �

R; �C)� CR + CC ;
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with Ak1;k2(�
R
t ; �

C
t ) =

(n�1)!
k1!k2!(n�k1�k2�1)!�

R
t
k1�Ct

k2(1� �Rt � �Ct )n�k1�k2�1, which does not depend

upon the produced quantities, and

Dk1;k2(q
R
t ; q

C
t ; q

I
t ; �

R
t ; �

C
t ) = P ((k1 + 1)q

R
t + k2q

C
t + (n� k1 � k2 � 1)qIt )qRt � C(qRt )

� [P (k1qRt + (k2 + 1)qCt + (n� k1 � k2 � 1)qIt )qCt � C(qCt )]:

(48)

Which depends upon �R and �C through qRt = HR(qCt ; q
I
t ; �

R
t ; �

C
t ). Note that

Dk1;k2(q
�; q�; q�; �Rt ; �

C
t ) = 0; 8 �R; �C . Next to that the partial derivatives of Dk1;k2(x)

evaluated at the equilibrium are given by

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

�qRt

����
x�
= [P 0�)q� + P (Q�)� C 0�)]HR

qR(x
�) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

�qCt

����
x�
= [P 0�)q� + P (Q�)� C 0�)](HR

qC (x
�)� 1) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

�qIt

����
x�
= [P 0�)q� + P (Q�)� C 0�)]HR

qI (x
�) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

��R

����
x�
= [P 0�)q� + P (Q�)� C 0�)]H�R(x

�) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

��C

����
x�
= [P 0�)q� + P (Q�)� C 0�)]H�C (x

�) = 0:

(49)

Where the second equalities follow from the fact that P 0�)q� + P (Q�) � C 0�) = 0 is the �rst

order condition of any �rm in a Cournot-Nash equilibrium. Using this it follows immediately

that the partial derivatives of �4 are given by:

��4

�qRt

����
x�
= KR

1 (C
C � CR; CI � CC)

��UR

�qRt

����
x�
+KR

2 (C
C � CR; CI � CC)

��UC

�qRt

����
x�

= 0

(50)

and

��4

�qCt

����
x�
= KR

1 (C
C � CR; CI � CC)

��UR

�qCt

����
x�
+KR

2 (C
C � CR; CI � CC)

��UC

�qCt

����
x�

= 0

(51)
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and

��4

�qIt

����
x�
= KR

1 (C
C � CR; CI � CC)

��UR

�qIt

����
x�
+KR

2 (C
C � CR; CI � CC)

��UC

�qIt

����
x�

= 0

(52)

and

��4

��Rt

����
x�
= KR

1 (C
C � CR; CI � CC)

��UR

��Rt

����
x�
+KR

2 (C
C � CR; CI � CC)

��UC

��Rt

����
x�

= 0

(53)

and

��4

��Ct

����
x�
= KR

1 (C
C � CR; CI � CC)

��UR

��Ct

����
x�
+KR

2 (C
C � CR; CI � CC)

��UC

��Ct

����
x�

= 0:

(54)

Furthermore, the partial derivatives of �5 are given by

��5

�qRt

����
x�
= KC

1 (C
C � CR; CI � CC)

��UR

�qRt

����
x�
+KC

2 (C
C � CR; CI � CC)

��UC

�qRt

����
x�

= 0

(55)

and

��5

�qCt

����
x�
= KC

1 (C
C � CR; CI � CC)

��UR

�qCt

����
x�
+KC

2 (C
C � CR; CI � CC)

��UC

�qCt

����
x�

= 0

(56)

and

��5

�qIt

����
x�
= KC

1 (C
C � CR; CI � CC)

��UR

�qIt

����
x�
+KC

2 (C
C � CR; CI � CC)

��UC

�qIt

����
x�

= 0

(57)
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and

��5

��Rt

����
x�
= KC

1 (C
C � CR; CI � CC)

��UR

��Rt

����
x�
+KC

2 (C
C � CR; CI � CC)

��UC

��Rt

����
x�

= 0

(58)

and

��5

��Ct

����
x�
= KC

1 (C
C � CR; CI � CC)

��UR

��Ct

����
x�
+KC

2 (C
C � CR; CI � CC)

��UC

��Ct

����
x�

= 0:

(59)

The Jacobian of the system, evaluated at the equilibrium x� is thus given by

J jx� =

0BBBBBBBBBB@

HR
qR HR

qC HR
qI HR

�R HR
�C

J21 J22 J23 J24 J25

�R
�

�C
�
1� �R

� � �C
�

0 0

0 0 0 0 0

0 0 0 0 0

1CCCCCCCCCCA
(60)

with

J21 = (n� 1)�R
�
HR
qRR

0�)

J22 = (n� 1)
�
�R

�
HR
qC + �C

��
R0�)

J23 = (n� 1)
�
�R

�
HR
qI + 1� �R

� � �C
��
R0�)

J24 = (n� 1)
�
HR
��
x�
+ �R

�
HR
�R � q�

�
R0 ((n� 1)q�)

J25 = (n� 1)
�
HR
��
x�
+ �R

�
HR
�C � q�

�
R0 ((n� 1)q�) :

This Jacobian has very complicated eigenvalues which cannot be expressed in a useful function,

for this we have to look at the leading example.

Leading example. We know that the Cournot heuristic is a lagged version of the rational
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heuristic in this leading example since the inverse demand function is linear, therefore the

dimension of the dynamical system can be reduced by one. Note that only the Cournot

production is a lagged version of the rational production. The Cournot pro�ts and resulting

fractions are in general not lagged rational pro�ts and fractions. The production plans of the

system, are given by

qRt+1 = HR(xt) =
a� c

b(2 + (n� 1)�Rt+1)
� n� 1
2 + (n� 1)�Rt+1

(�Ct+1q
C
t+1 + (1� �Rt+1 � �Ct+1)q

I
t+1)

qCt+1 =
a� c

2b
� 1
2
(n� 1)(�Rt qRt + �Ct q

C
t + (1� �R � �C)qIt )

qIt+1 = �Rt q
R
t + �Ct q

C
t + (1� �R � �C)qIt ;

(61)

where xt = (qCt ; q
I
t ; �

R
t ; �

C
t ). Furthermore, the average pro�t (Eq. (5)) boils in the leading

example down to

�Rt =F (H
R(xt); q

C
t ; q

I
t ; �

R
t ; �

C
t )

=(a� c)HR(xt)� b(HR(xt) + (n� 1)qIt )HR(xt)

� b
�
HR(xt)� qIt

�
(n� 1)�Rt HR(xt)� b(qCt � qIt )(n� 1)�Ct HR(xt);

(62)

using that

X
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�Rt
k1
�Ct

k2
(1� �Rt � �Ct )

n�k1�k2�1 = 1;

X
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�Rt
k1
�Ct

k2
(1� �Rt � �Ct )

n�k1�k2�1k1 = (n� 1)�Rt ;X
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�Rt
k1
�Ct

k2
(1� �Rt � �Ct )

n�k1�k2�1k2 = (n� 1)�Ct :

(63)

Remember that �Ct = F (qCt ; H
R(xt); q

I
t ; �

C
t ; �

R
t ) and �

I
t = F (qIt ; q

C
t ; H

R(xt); 1� �Rt � �Ct ; �Ct ).

For the population dynamics we use the Logit dynamics, as for example discussed in Brock

and Hommes (1997). The complete dynamical system in this leading example is thus given
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by 4

qCt+1 = �1(xt) =
1

2 + �R(n� 1)

�
a� c

2b
� 1
2
(n� 1)(�Ct qCt + (1� �R � �C)qIt )

�
qIt+1 = �2(xt) = �Rt �

1(x) + �Ct q
C
t + (1� �R � �C)qIt

�Rt+1 = �3(xt) =
e��U

R
t

e��U
R
t + 1 + e���U

C
t

�Ct+1 = �4(xt) =
e��U

C
t

e�(�U
R
t +�U

C
t ) + e��U

C
t + 1

:

(64)

This system has one unique equilibrium where all �rms produces the Cournot-Nash quantity

q�. Since production is equal at the equilibrium, pro�ts are equal at the equilibrium. The

equilibrium fractions are therefore a function of the information costs and the evolutionary

pressure, given by

�R
�
=

e�(C
C�CR)

e�(CC�CR) + 1 + e��(CI�CC)
and �C

�
=

e�(C
I�CC)

e�(CI�CR) + e��(CI�CC) + 1
:

The Jacobian of the system in the leading example evaluated at the equilibrium is therefore

given by

J jx� =

0BBBBBBB@

� (n�1)�C�

2+�R�(n�1) � (n�1)(1��R���C�)
2+�R�(n�1) J13 J14

�C
�
�
1� (n�1)�R�

2+�R�(n�1)

�
(1� �R

� � �C
�
)
�
1� (n�1)�R�

2+�R�(n�1)

�
0 0

0 0 0 0

0 0 0 0

1CCCCCCCA
; (65)

For the calculation of the eigenvalues J13 and J14 are irrelevant because the third and fourth

4The population dynamics can alternatively be expressed as

�Rt+1 =
e�UR;t

e�UR;t + e�UC;t + e�UI;t

�Ct+1 =
e�UC;t

e�UR;t + e�UC;t + e�UI;t
;

which is a more common but equivalent expression.
The rational production plan is left out of the dynamical system because the Cournot production plan is a

lagged version of the rational production plan.
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row contain only zeros. For general �R� and �C� the eigenvalues become very lengthy expres-

sions which cannot be simpli�ed. Nevertheless, because the rational heuristic uses much more

information than the Cournot and the imitation heuristic, we set the cost of this heuristic

equal to CR > 0, while we set the cost of the other heuristics equal to 0, without loss of

generality. After this parameterization we can calculate the eigenvalues analytically. The

eigenvalues are a function of n and the the product of � and CR. The eigenvalues are given

by

�1 = �2 = �3 = 0 and �4(n;CR�) =
3eC

R� � neC
R�

n+ 4eCR� + 1

For the system to be stable we need j�4(n;CR�)j < 1. Note that �4 is always less than 1.

Rearranging gives that the threshold number of �rms is given by

n <  (CR
�
�) =

7eC
R� + 1

eCR� � 1
(66)

Note that economically the number of �rms can only be an integer but mathematically the

number of �rms can be treated as a continuous variable.

From equation (66) we see that when information cost CR is close to zero, the sys-

tem is stable for all n. When CR = 1 and � = 3, as simulated below, the equilibrium�
a�c
b(n+1)

; a�c
b(n+1)

; e�3

e�3+2 ;
1

e�3+2

�
is stable when n < 7:42. When n = 7:42, the system undergoes

its �rst bifurcation. The largest eigenvalue is equal to �1 at the bifurcation, indicating that

the �rst bifurcation is a period-doubling bifurcation. This is con�rmed by the simulations

below.
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(a) Bifurcation diagram
(qt; n)

(b) Time path of Cournot
and imitiation quantities

(c) Cournot pro�t
di¤erential

(d) Time path Cournot
fraction

(e) Largest Lyapunov
exponent

(f) Largest Lyapunov
exponent

Figure 4: Linear n-player Cournot competition between rational, Cournot and imitation �rms
with endogenous fraction dynamics.

The leading example is simulated in the Fig. 4. Panel (a) depicts the bifurcation diagram

for increasing number of �rms n. The �rst period-doubling bifurcation appears, as calculated

analytically for n = 7:42. For n = 11:85, the system undergoes a Hopf-bifurcation which

creates highly non-linear dynamics. For 13 � n � 14:4, the system is in a 10-cycle whereas

for n > 14:4 the system becomes chaotic again. Panel (b) displays oscillating time series of

produced quantity by the Cournot and imitation �rms and the equilibrium quantity fraction
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q�. Since the rational quantity in period t + 1 equals the Cournot quantity in period t this

time series is not included. Panel (c) displays the resulting pro�ts. Note that �It > �
R
t 8t and

�It � �Ct 8t. Panel (d) displays the resulting oscillating time series of the fraction fractions.

Due to the information cost the sophisticated rational �rms do not perform better than the

Cournot and imitation �rms resulting in low fractions of rational �rms. Moreover, since the

imitation pro�t is at least as high as the Cournot pro�t, the resulting imitation fraction is

at least as high as the Cournot fraction. In Panel (e) the largest Lyapunov exponent for

increasing number of �rms is shown whereas in Panel (f) the largest Lyapunov exponent for

increasing � is shown. Game and behavioural parameters are set equal to: n = 19, a = 17,

b = 1, c = 1, CR = 1, CC = 0, CI = 0, � = 3. Initial conditions are set equal to: qR0 = 0:3,

qC0 = 0:1, q
I
0 = 0:25, �

R
0 = 0:5, �

C
0 = 0:2.

Last, �gure 5 shows some attractors of the evolutionary model for increasing evolutionary

pressure, with (quasi-)periodic motion just after the second bifurcation and breaking of the

invariant circles into a strange attractor as the number of �rms further increases. Similar

�breaking of the invariant circles�route to chaos appears for the rational and Cournot series.
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(a) phaseplot � = 2 (b) phaseplot � = 2:4

(c) phaseplot � = 2:65 (d) phaseplot � = 2:95

Figure 5: Phaseplots (qI ; 1� �R � �C), for increasing evolutionary pressure.

6 Concluding Remarks

In this paper we set out to �lling a gap in the literature on heterogenous heuristics in a

Cournot oligopoly with boundedly rational players. Partly motivated by the experimental

evidence for imitative behaviors in oligopoly games, our focus is on better understanding the

role imitation plays in a competitive Cournot environment populated by myopic best-reply

and rational �rms. We derived the stability conditions for our full evolutionary model and

concluded that introducing imitators tends to stabilize the dynamics, provided that imitation

is relatively cheaper vis-a-vis the best-reply (Cournot) rule.

For the pairwise contests between heuristics we �rst showed that in the case when Cournot

�rms compete with imitators, absent the information costs, the threshold on the number of

�rms that changes the system from stable to unstable is 7 and second, in the situation when
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rational �rms compete with imitator sthe system is always stable, regardless of the information

costs of the more sophisticated, rational heuristic. For the full ecology of behavioral rules -

rational �rms, Cournot �rms and imitators - the stability threshold on the number of �rms

depends on the evolutionary pressure and the stability of the cheapest heuristic. On the

one hand, if the evolutionary pressure increases, the threshold on the number of �rms for

the system to be stable decreases. On the other hand, if the cheapest behavioural rule is

stable, the dynamics converge to a situation where most �rms use this behavioural rule and

all �rms produce the Cournot-Nash equilibrium quantity. If the cheapest heuristic is unstable,

complicated endogenous �uctuations may occur, in particular, when the evolutionary pressure

is high.

The paper also contributes to the broader literature on evolutionary game dynamics arising

from systems with heterogenous players. In this respect, to our best knowledge it is the �rst

paper that investigates the stability of a model where three behavioural rules compete. Beyond

the class of Cournot oligopoly games, the framework is amenable to other classes of games

with a continuous action space (e.g. sub- or super-modular games).

For future research related to the implications of imitative behavior in heterogenous envir-

onments, it would be worth considering di¤erent interaction and/or information structures.

Our way of modelling imitation favors the average play (imitate the average behavior in the

population) but other imitation rules may be envisaged. For instance, a version of the imita-

tion heuristic that copies the production decision of the most pro�table �rm from the entire

population or that imitates the succesful players only among the m closest neighbors, in a

location model à la Hotelling.). In these alternative information scenarios the question of

whether coordination on a non-Cournot-Nash equilibrium - for example the cartel solution or

the Walrasian equilibrium - remains open.
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