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Abstract

We explain how to evaluate the fundamental price of utility tokens. Our model

endogenizes the velocity of circulation of tokens and yields a pricing formula that

is fully microfounded. According to our approach, tokens are valuable because

they have to be immediately accessible when the platform service is needed, a

requirement that is reminiscent of the cash-in-advance constraint in the theory of

money.

KEYWORDS: Asset pricing, utility tokens, Blockchain, ICOs

JEL CODE: G12, G24.

1 Introduction

The vast majority of startups finance their growth by raising equity from venture

capitalists. This market dominance has recently been challenged by a new fundraising

method that leverages Blockchain technologies. Following the examples of Bitcoin and

other cryptocurrencies, such as Ethereum and Ripple, a growing number of startups

rely on Initial Coin Offerings (ICOs hereafter) to raise capital: The company issues a

new cryptocurrency, and investors receive its “tokens” in exchange for legal tender or

other cryptocurrencies. The tokens derive their value from the fact that they will be
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used to purchase the goods or services offered by the issuer once its platform becomes

operational. The value of the token is therefore expected to increase with the size of

the business, thus rewarding early investors.

Although the disruptive potential of ICOs is now widely recognized, their adoption

beyond the crypto-community has been hindered by their controversial reputation.

The most common criticism is that ICOs are used to draw unsophisticated investors

towards nonviable projects. Such practice will only be curbed through the creation

of a reliable framework for the valuation of ICOs, making it possible for investors to

identify real opportunities.

This paper takes one of the early steps in that direction by proposing a fully micro-

founded pricing model for utility tokens. We show why tokens intrinsically differ from

other financial instruments, such as debt or equity, and thus cannot be priced using

off-the-shelf valuation techniques. Our model identifies the fundamental value of to-

kens as a function of two sets of primitives: consumers’ preferences and technological

constraints. It characterizes their price trajectory from the ICO date until convergence

to the long-run equilibrium. In particular, our solution endogenizes the evolution of

token velocity whereas reduced-form pricing techniques currently used by investors

arbitrarily specify the speed at which tokens circulate.

Relying on a formal model allows us to clarify the answers to the following essential

questions. Why and under which conditions are tokens valuable? What is the actual

cost of ICOs for the issuer?

Our response to the first question is that tokens are valuable to the extent that,

when needed, the platform has to be accessed immediately. In other words, users

cannot delay their consumption until they have been able to acquire the required

tokens in the secondary market. This constraint is reminiscent of the cash-in-advance

constraint commonly advocated to endow cash with some intrinsic value. The parallel

is not really surprising since, after all, tokens are an electronic form of money. Their

interesting specificity with respect to cash is that the token-in-advance constraint can

be hardwired into the technological specification of the platform, and is also likely to

depend on the type of services provided by the company.1

Provided that the token-in-advance constraint holds, tokens are valuable and we

derive a pricing formula which only depends on the preferences of users. It shows

that services are sold at a price that is below their marginal utility. Quite intuitively,

1In practice, most platforms combine staking incentives and lock-in periods to slow down the
circulation of tokens.

2



users have to be compensated for holding tokens that do not bear any interest. Such

incentives are provided at the time of trade by ensuring that users extract some conve-

nience yield from the exchange of the marginal token. But this implies that services

are sold at a discount, as the equilibrium price is smaller than the one that would have

prevailed if services could be bought with fiat money. This discount is the implicit

cost of relying on an ICO instead of venture capital to finance early growth. By issuing

utility tokens, the company commits to selling its product at a discounted price in

the future. This insight clarifies the often muddled debate over the trade-off between

ICOs and equity financing, most notably by dispelling the too widely shared belief that

ICOs are a free lunch for issuers.2

Related literature. ICOs being a very recent phenomenon, the related academic lit-

erature is still in its infancy.3 The first generation of papers focused on the value of

privately-issued digital currencies. Athey et al. (2016) analyze the determinants of their

exchange rates, demonstrating that investors may hoard currencies in anticipation

of future transactional usage. A similar mechanism is at work in the dynamic version

of our model where most tokens are initially held by investors. A related strand of re-

search revisits the indeterminacy of exchange rates between two currencies originally

established by Kareken and Wallace (1981). Garratt and Wallace (2008) distinguish

the central bank from the privately issued currency by introducing a storage cost for

the former and a disaster risk for the later. Pagnotta (2018) explicitly models how

the crash risk is determined by miners’ investment, thus giving rise to price–security

feedback loops that can amplify or dampen the impact of demand shocks on Bitcoin

price. Uhlig and Schilling (2018) show that indeterminacy can support a speculative

equilibrium where the cryptocurrency is held in anticipation of its appreciation. Biais

et al. (2018) embed a dual-currency regime into an OLG model and show how their

framework can be taken to the data. Our paper differs from this literature in that

we are not considering cryptocurrencies whose purpose is to serve as a universal

means of payment, but instead utility tokens whose detention is required to consume

a particular product. Hence our pricing formula is directly derived from consumers

preferences rather than from transactional benefits.

2It is also sometimes argued that ICOs are costly because they amount to selling for free the amount
of services corresponding to the mass of issued tokens. But this argument is misleading as the company
can always sell back its tokens on the secondary market. The loss therefore occurs at the pricing margin,
through downwards adjustments, and not at the quantity margin, through lost sales.

3The first documented token sale was held by Mastercoin in 2013.
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Our paper is therefore more closely related to the growing literature studying

ICOs. A first branch focuses on corporate finance issues related to the incentives of

investors and entrepreneurs. Catalini and Gans (2018) show that ICOs may be more

efficient than venture capital when participants in the ICO market are well informed,

as token prices reveal the actual quality of the project to a wider set of investors.

Chod and Lyandres (2018) explains why token sales lead to underinvestment because

they generate an agency conflict between the entrepreneur and investors. In spite

of this drawback, they find that ICOs can dominate traditional venture capital when

investors are underdiversified. Canidio (2018) also underlines the agency conflicts

induced by ICOs since there is a non negligible probability that the entrepreneur will

sell all her tokens and halt the development of her project. Moreover, even when this

risk is avoided, the entrepreneur will behave myopically by maximizing the project

value in the post-ICO period and not over its all lifetime. A more positive strand of

paper outlines the coordination benefits of ICOs in applications with network effects.

Bakos and Halaburda (2018) and Lia and Mann (2018) show that token sales may help

overcome coordination failure, since token sales provide a signal about consumers’

willingness to use the platform.

In order to focus on the pricing of tokens, we abstract from issues related to incen-

tives alignment between entrepreneurs and investors. In this respect, the paper most

closely related to ours is Cong et al. (2018). They also derive a dynamic asset pricing

model of tokens, showing that token appreciation can accelerate platform adoption

by allowing users to partially internalize network externalities. The main difference

between our approaches is that we study utility tokens that have to be exchanged in

order to access the platform, whereas Cong et al. (2018) assume that tokens give access

to a stream of services when they are staked. As a result, the velocity of circulation is

not a relevant statistics in their model because tokens are always held by users. By

contrast, the share of tokens held by investors is endogenously determined in our

model, and its evolution drives changes in the velocity of circulation, thus explaining

why this statistics has been the subject of intense scrutiny in the crypto-community.

Structure of the paper. Section 2 derives the equilibrium price of tokens in steady-

state. Section 3 shows how this price can be used to finetune the amount of tokens

issued at the ICO stage. Section 4 describes how token velocity evolves over time

by extending our framework to a setup with gradual adoption. Proofs of claims and

propositions are relegated to the Appendix A.1.
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2 Steady-State Solution

2.1 Model Set-Up

We consider a platform which issues tokens to finance its development. Tokens are

valuable because they allow their owners to purchase the goods and services produced

by the platform. The overall supply of tokens, or monetary base, is equal to M . To

simplify matters, we assume that the mass of tokens remains constant over time,

which is actually true for most ICOs since they impose an upper-bound on the supply

of tokens issued.

There are two markets: (i) a trading market where tokens are bought using fiat

money, and (ii) a commodity market where tokens are sold in exchange of the plat-

form’s output. The platform has monopoly power on the commodity market and

commit to exchanging one unit of service against each token. The price or exchange

rate of the token in fiat money is denoted by pt. It is determined on the perfectly

competitive and frictionless trading market.

We normalize the mass of users to one. In each period, a constant share λ ∈ (0, 1)

of users are willing to consume the platform’s services. Then they derive utility u (c)

from consuming c units of service, where u (c) is a standard utility function (u′(c) >

0, u′′(c) < 0, limc→∞ u
′(c) = 0). Hence the per-period utility function of user i ∈ [0, 1]

reads

U
(
c, di

)
= u(c) ∗ di, where di =

{
0 with probability 1− λ
1 with probability λ

. (1)

2.2 Equilibrium Price

Each period is divided into two sub-periods. As summarized in Fig. 1, the commodity

market opens first and preference shocks di are revealed. Users can buy the service

only if they have entered the period with some tokens. Then the commodity market

closes and the trading market opens, allowing users to rebalance their token holdings

by selling and buying tokens at the market price pt. The timing is crucial. Suppose

instead that users first observe their willingness to consume and then adjust their

token holdings. Since tokens do not bear any interest, users would find it optimal to

hold zero tokens at the beginning of the period and the market price pt would collapse

to zero. The only use of tokens is that they enable consumers to satisfy their needs.
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Thus they are valuable because the service is needed immediately and it is too costly

to wait for the next period.

Figure 1: TIMING ASSUMPTIONS.

When the trading market opens, users decide how many tokens m to carry into the

next period. Since users can instead invest their money at the risk-free rate r, their

optimal returns read

v(pt, pt+1) ≡ max
m≥0

{
max
c∈[0,m]

{λ [u(c) + pt+1(m− c)]}+ (1− λ)pt+1m− (1 + r)ptm

}
. (2)

The value of the dummy variable d will be drawn in the following period, where it

will be equal to 0 with probability 1− λ. Then the agent will not need the service and

so she will enter next period’s trading market with the same amount of tokens m, thus

earning a reward equal to pt+1m, as indicated by the penultimate term in (2). With the

complementary probability λ, the dummy variable d will be equal to 1 and the agent

will value the services provided by the platform. Then she will choose her optimal

level of consumption under the constraint c ∈ [0,m] because consumption can never

be greater than token holdings. If the agent does not consume all her tokens, she will

enter next period’s trading market withm− c tokens, thus earning the financial reward

pt+1(m− c) on top of the utility benefits u(c). Finally, we ensure that v measures the

optimal net returns by subtracting the value that would have been obtained if the

funds ptm had been invested at the risk-free rate r.

For the returns function v to be well defined, the token has to appreciate at a

rate that is lower than the risk-free rate, as otherwise agents would find it optimal to

hoard an infinite amount of tokens. This requirement also ensures that the constraint

ct ≤ mt always binds for users that wish to access the platform’s services. This is

because consumption is determined after the value of the demand shock d has been

revealed, whereas token holdings are decided beforehand. Given that agents take their
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investment decision behind the veil of ignorance, they face the risk of not needing the

service. This is why consumers are always rationed by the amount of tokens they carry

from one period to the next.4 The returns function is therefore equivalent to

v (pt, pt+1) = max
m≥0
{λu (m) + (1− λ)pt+1m− (1 + r)ptm} , (3)

and token holdings are optimal when

rpt = λ [u′ (m∗)− pt+1]︸ ︷︷ ︸
Convenience Yield

+ pt+1 − pt︸ ︷︷ ︸
Capital Gain

. (4)

The rate of return on tokens can be decomposed into two components: a capital

gain and a convenience yield. The capital gain is standard since it corresponds to the

appreciation in the price of the token. By contrast, the convenience yield is specific to

utility tokens. The marginal token can provide a service whose utility is equal to u′(m∗).

But the service is delivered in exchange of the token. Thus one also has to take into

account the loss of the token and deduct its price from the marginal benefit. From the

standpoint of pricing theory, this is the main difference between tokens and shares.

Since shares do not have to be exchanged to provide their owners with dividends,

their fundamental value is equal to the discounted sum of all future dividends. Utility

tokens, on the other hand, do not yield any benefits if they are not traded, so their

fundamental value is equal to the discounted surplus of the next trade. In our model,

a trade occurs with probability λ, which explains why the surplus u′(m∗) − pt+1 is

multiplied by λ in the expression of the convenience yield.

All agents being identical, they hoard the same amount of tokens. Since the mass

of users is normalized to one, the market for tokens clears when

mi,∗
t = M for all t and all i ∈ [0, 1] . (5)

Replacing the market clearing condition into (4), we find that the price of tokens obeys

the following law of motion

pt =
1

1 + r
[λu′(M) + (1− λ)pt+1] . (6)

4This result immediately follows comparing the FOCs for consumption, u′(c∗) = pt+1, with the one
for token holdings (4). Since we focus on cases where (1 + r)pt > pt+1, u′(m∗) > pt+1 = u′(c∗) and so
the feasibility constraint, c ≤ m∗, binds.
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Setting pt+1 equal to pt, yields the following solution for the steady-state price

p̂ =
λ

r + λ
u′(M) < u′(M). (7)

As any other initial condition than p̂ generates diverging trajectories for pt, the steady-

state p̂ is also the unique equilibrium price. Not surprisingly, p̂ is decreasing in token

supply M . More interestingly, services are paid at a price that is lower than their

marginal utility. This is the cost involved in requiring users to pay in tokens as the

equilibrium price is smaller than the one that would have prevailed if services could

be bought using fiat money. This implicit discount compensates users for the lost

interests and is therefore proportional to the risk-free rate, which explains why p̂

converges to u′(M) when r goes to zero.

2.3 Endogenous User Base

The equilibrium price ensures that the trading market clears. When users are homoge-

nous, as in the previous subsection, market clearing implies that potential demand is

saturated. By contrast, when users are heterogenous, the user base becomes endoge-

nous. For simplicity, we assume that users share the same per-period utility function

(1), but incur different fixed costs of accessing the platform. These fixed costs are

inversely proportional to the level of technological expertise χi of user i. The parameter

χi captures the opportunity cost of the time devoted to using the platform. User i finds

it optimal to hold some tokens whenever

v(pt, pt+1)− 1

χi
≥ 0.

Since we focus on the steady-state, we simplify our notation by introducing v̂(p) ≡
v(p, p) to denote returns when the price remains constant. Potential users draw their

ability from the distributionG(χ). Thus the user base in steady-state, which we denote

by N̂ , is equal to

N̂ = 1−G
(

1

v̂ (p)

)
. (8)

Since v̂(p) is decreasing in p, (8) defines a decreasing relation between N̂ and p. Intu-

itively, less agents access the platform when the price of its service goes up.

The equilibrium price p̂ is obtained interacting this condition with the law of
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motion for pt. First, we have to adjust the market clearing condition by rescaling the

overall mass of tokens by the number of users

mi,∗
t =

M

Nt

for all t and all i ∈ [0, 1] . (9)

Then the law of motion (6) generalizes to

pt =
1

1 + r

[
λu′
(
M

Nt

)
+ (1− λ)pt+1

]
,

so that the price can be stable solely if

p =
λ

r + λ
u′
(
M

N̂

)
. (10)

Equation (10) defines an increasing relation between N̂ and p. As the supply of tokens

M is fixed, when the price increases, the share of users will increase, but each of them

will hold a lower amount of tokens.

Interacting it with (8) yields a system of two equations in two unknowns, N̂ and p,

with at most a unique solution.

A Closed-Form Solution. The model can be solved analytically when the utility func-

tion of users is CRRA and when their abilities are sampled from a Pareto distribution

H1 : u (c) =
c1−σ

1− σ
,with σ ∈ (0, 1) ,

H2 : G (χ) = max

{
0, 1−

(
χ

χ

)α}
for all χ > 0, with χ > 0 and α > 0.

Although restrictive, both hypotheses have some empirical support: CRRA is

among the most common utility specification; whereas models with heterogeneous

agents usually rely on Pareto distributions to capture fat tails in the distribution of

abilities. From a formal standpoint, Assumption H1 enables us to explicitly derive net

returns as a function of the steady-state price. Combining this solution with H2 yields

a closed-form expression for the equilibrium condition (8), defining a locus for the

mass of users N̂ that is weakly decreasing in p. Interacting this condition with the rest

point requirement (10) yields a system of two equations for the two unknowns N̂ and

p̂.
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Claim 1 When H1 and H2 hold, the equilibrium mass of users N̂ and token price p̂ are

uniquely determined by the following system of equations

Participation constraint: N̂ = min

{
1,

[
χλ1+ρ

ρ [(r + λ) p̂]ρ

]α}
, (11)

Demand for tokens: N̂ = M

[
p̂ (r + λ)

λ

] 1
σ

, (12)

where ρ ≡ (1− σ) /σ.

Proof. See Appendix A.1.1.
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Figure 2: EQUILIBRIUM PRICE AND USER BASE. PARAMETERS: r = .05, σ = .5, κ = 1,

M = 1, χ = 2.

Figure 2 illustrates how the equilibrium price and market size are pinned down by

the conditions (11) and (12) for two values of λ, i.e. the probability that a trade occurs.

As λ increases the participation constraint shifts upwards: for a given price level, more

users will need the service. The demand for tokens (M/N) is increasing in the mass

of users: as the supply of tokens is fixed, when the mass of users goes up, individual
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holdings goes down, thus sustaining a price increase. As the probability of transaction

λ goes up, so does the price. The solid lines (λ = 0.3) represent an equilibrium where

the market is not saturated since they interesect at a level of the user base which is

lower than one. The dotted lines (λ = 0.65) illustrate an equilibrium where the market

is saturated, where all the users consume the service. Hence, a higher probability of

trade is associated with a higher equilibrium price and a bigger mass of service users.

3 ICO Design

3.1 Platform’s Profits

The platform incurs a cost per period κ(C) that is proportional to the overall consump-

tion of its output C ≡
∫ 1

0
cidi. In steady state, Ĉ = λĉ = λM , and so profits π stabilize

at the following level

π̂ (M) = p̂Ĉ − κ(Ĉ)

=
λ

r + λ
u′(M)λM − κ(λM).

Asking for the service to be paid in tokens lowers equilibrium profits since the service

is sold at a price p̂ that is smaller than its marginal utility u′(M).

Claim 2 Assume that: (i) H1 holds, i.e. u(c) = c1−σ/ (1− σ); (ii) Users are homogenous;

(iii) marginal costs are constant, so that κ(Ĉ) = κĈ. Then the token mass M∗ (λ) that

maximizes profits as a function of λ is well defined whenever σ ∈ (0, 1) and is equal to

M∗ (λ) =

[
λ (1− σ)

κ (r + λ)

] 1
σ

.

Figure 3 reports the equilibrium price and platform’s profits as a function of the

overall mass of tokens when, as in Claim 2, users’ utility is CRRA and marginal costs

are constant. The upper-panel shows that prices are decreasing in M , while the lower-

panel shows that profits are globally concave with a global maximum. We use three

different values of λ to compute the equilibrium schedules. Not surprisingly, price

and profits are increasing in the frequency λ at which users need to use the services

provided by the platform. Accordingly, the optimal mass of tokens M∗ (λ) is also

increasing in λ.
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Figure 3: EQUILIBRIUM PRICE AND PROFITS AS A FUNCTION OF M FOR DIFFERENT

VALUES OF λ. PARAMETERS: r = .05, σ = .5, κ = .25.

3.2 Optimal Token Supply

We have characterized the production stage. Adding an initial period, where the

platform sets in advance the amount of tokens to be issued, allows us to model the

optimal policy at the ICO stage. Token supply is decided behind the veil of ignorance.

For instance, platform owners are likely to be uncertain about the actual share λ of

users that will need their services in each period. Hence they should choose the overall

supply of tokens M∗ that maximizes the following objective function

M∗ = arg max
M>0

{∫
π̂ (M |λ) dφ (λ)

}
, (13)

where φ (λ) denotes the owners’ prior about λ.

As shown in Figure 4, there exists a unique solution to problem (13), when the

conditions in Claim 2 are satisfied and λ is sampled from a lognormal distribution.
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Figure 4: EXPECTED PROFITS AT THE ICO STAGE. PARAMETERS: r = .05, σ = .5, κ = .25,
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4 Gradual Adoption

We now explain how to model the evolution of the token price from the ICO date

until convergence to the long run steady-state. This transition might take a while

as users gradually migrate to the platform. Slow adoption can be due to a variety of

reasons ranging from reputation building and growing awareness about the services

provided by the platform, to improvements in the underlying technology. We adopt

the last view and focus on cases where user adoption builds up over time because

the platform becomes more and more efficient. We capture technological progress

through the introduction of the demand shifter z. The quality of the services provided

by the platform is proportional to z as

u(c; z) = zu(c; 1). (14)

To ease notation, we hereafter refer to u(c; 1) as u(c). We also devise our model

in continuous time because it greatly simplifies the analysis. The continuous time
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counterpart to equation (3) reads

v (pt, ṗt, zt) = max
m
{λ [ztu (m)− ptm] + ṗtm− rptm} . (15)

where λ now denotes the Poisson rate at which users need to access the platform.5

As in Section 2.3, user i draws her ability from the distribution G, and buys tokens

when net returns exceed her fixed costs, i.e. when v (pt, ṗt, zt) ≥ χ−1
i . Hence market

size N at time t is a function of the vector (pt, ṗt, zt) that satisfies

N (pt, ṗt, zt) = 1−G
(

1

v (pt, ṗt, zt)

)
. (16)

Price dynamics. The rate at which tokens appreciate depends on whether the marginal

holder is a user or an investor. If overall demand from users is too low to clear the

market, i.e. M > Ntm
∗
t , the marginal token will be held by agents that speculate on its

appreciation. Then, assuming an infinitely elastic supply of capital from investors, the

price has to grow at the rate of interest so that6

ṗt = rpt, when m∗t <
M

Nt

. (17)

In this regime, the token behaves as an asset bubble because it has no convenience

yield for the marginal holder. By contrast, when the demand from users clears the

market, i.e. M = Ntm
∗
t ,7 price dynamics is governed by users’ optimality condition so

that8

ṗt = −λ
(
ztu
′
(

M

N (pt, ṗt, zt)

)
− pt

)
+ rpt, when m∗t =

M

Nt

. (18)

Since this equation has the exact same structure as its discrete time counterpart (4),

we refer to Section 2.2 for a discussion of the convenience yield λ
(
ztu
′
(
M
Nt

)
− pt

)
.

Equilibrium path. The evolution of the token price is driven by changes in the produc-

5See Appendix A.2.2 for a formal derivation.
6Equation (17) also arises as a limit case of (18) when λ = 0, that is when the platform’s services will

never be needed, as would be the case for pure investors.
7Note that there is no need to consider regimes where Ntm

∗
t > M because ṗt is a free variable that

will adjust, namely decrease, until token demand from users is again equal to token supply.
8Equation (18) is the FOC of (15) where m∗t has been replaced by M/Nt to take into account the

market clearing condition. See also eq. (30) in Appendix A.2.2 for a derivation of (18) when users are
homogenous.
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tivity parameter z. We simplify the analysis by assuming that z follows a deterministic

trajectory that is commonly known. We further restrict our attention to processes that

increase over time and converge to a finite limit9

H3 : zt follows a deterministic process such that żt ≥ 0 and lim
t→∞

zt = z̄ <∞.

When productivity is low, user adoption is also low. Then most tokens are held

by investors and their price grows at the rate of interest, as specified in (17). But this

is obviously not sustainable in the long-run as the price would have to diverge to

infinity. Thus there must exist a productivity level above which all tokens are held by

users. In this regime the law of motion of p is governed by (18). Hence the equilibrium

path is pinned down by the boundary condition when time goes to infinity. Since

the rational trajectory must be such that all tokens are held by users in the long-

run, the equilibrium price converges to the steady-state analyzed in Section 2.3, i.e.

limt→∞pt = p̂ where

p̂ =
λ

r + λ
z̄u′

 M

1−G
(

1
v(p̂,0,z̄)

)
 . (19)

The terminal condition anchors the whole equilibrium path and, in particular, the

initial price p0 as no other initial condition generate trajectories that converge p̂. The

equilibrium path can therefore be solved using a shooting algorithm which checks, at

each step, whether or not m∗tNt < M , and then chooses the appropriate law of motion

between (17) and (18). More precisely, to establish whether the marginal holder is a

user or an investor, we first use the fact that ṗt ≤ rpt. Thus the optimality condition

for mt implies that m∗t ≤ u′−1 (pt/zt). Since flow returns v (pt, ṗt, zt) are increasing

in ṗt, it also follows from the market clearing condition (16) that Nt ≤ N (pt, rpt, zt).

Combining these two upper-bounds, we find that

m∗tNt ≤M (pt, zt) where M (pt, zt) ≡ u′−1 (pt/zt)N (pt, rpt, zt) . (20)

When M (pt, zt) < M , we can conclude that ṗt = rpt because the marginal holder

is necessarily an investor. By contrast, when M (pt, zt) > M , all holders are users and

the rate of appreciation ṗt is adjusted downwards until market clearing holds. We

9Although it is not complicated to let z diverge to infinity, we rule out this possibility because it
would muddle the discussion of the boundary conditions without adding new insights.
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show below, using a parametric example, that condition (16) generates a locus that

neatly separates the (p, z) space into two non-overlapping regions. The structure of

the equilibrium is summarized in Definition 3.

Definition 3 A Markov equilibrium with state variable zt is a solution such that:

• Users hold the amount of tokens m∗t which maximizes their net returns as defined

in eq. (15);

• The user base Nt results from optimal participation decisions as defined in eq.

(16);

• The law of motion of pt solves the system of first-order differential equations

(17)− (18), subject to the boundary condition limt→∞pt = p̂ where p̂ solves (19).

A tractable example. In general, the ODE (18) cannot be expressed analytically. How-

ever, if we impose H1 and H2, (18) greatly simplifies since it becomes linear. To see

why, notice first that when the utility function of users is CRRA, as stated in H1, optimal

token holdings read

m∗t =

[
ztλ

(r + λ) pt − ṗt

] 1
σ

. (21)

This equation is similar to the one prevailing in steady-state but for the inclusion of

ṗt. Quite intuitively, an increase in the appreciation rate raises token holdings since

it partially compensates users who do not need to access the platform in the current

period. Combining this expression with assumption H2 according to which abilities

are Pareto distributed, we obtain the linear equations (22) reported in Proposition 1.

Proposition 1 When H1 and H2 hold, the ODE (18) is linear and reads

ṗt =

 (r + λ) pt −
[

(ztλ)1+α(χ/ρ)
ασ

Mσ

] 1
1+α(1−σ)

, when Nt < 1,

(r + λ) pt − λztu′(M), when Nt = 1.

(22)

Illustration. We now use a parametric example to illustrate how the equilibrium

path is computed. First we need to specify how productivity zt changes over time. As
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commonly done in the literature on product diffusion, we assume that its evolution is

governed by a logistic curve, so that

zt =
z0e

gzt

1 + z0 (egzt − 1)
.

The values of the diffusion parameter gz and the starting productivity z0 are common

knowledge. A typical adoption curve is illustrated in Figure 5. For our arbitrary choice

of parameters, zt reaches 99% of its long-run value z̄ = 1 around the ten years mark.
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Figure 5: DIFFUSION OF PRODUCTIVITY zt OVER TIME. PARAMETERS: zt =

z0 exp (gzt)/(1 + z0(exp (gzt)− 1)), z0 = .05, gz = .7.

In order to compute the equilibrium price path, we need to know which law of

motions between (17) and (18) applies at each point in time. In other words, we have

to determine whether the marginal token holder is a user or an investor. Computing

the values ofM (pt, zt) defined in (20), we find that, when H1 and H2 hold,M separates

the (p, z) plane into two non-overlapping regions. As shown in Figure 6, for each level

of productivity, there exists a cutoff price below which all tokens are held by users.

Figure 6 indicates that condition (20) allows us to select the relevant ODE for any

combination of price and productivity levels. Thus we can use a shooting algorithm to

identify the starting price p0 that generates the unique path which converges to the

steady-state p̂.
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Figure 6: MARGINAL TOKEN HOLDER AS A FUNCTION OF PRICE AND PRODUCTIVITY.

PARAMETERS: λ = .3, r = .2, M = 1, σ = .5, α = 1, χ = 2, z0 = .05, gz = .7.

The path resulting from our choice of parameters is reported in the upper-panel of

Fig. 7. The lower panel reports the share of tokens that are held only for speculation

purpose. As time goes by, more and more tokens are held with the objective of being

used. In our arbitrary example, all tokens are held by users after 4 years and a half.

This switch of regime generates an inflexion in the derivative of the price path as the

marginal holder now enjoys some convenience yield.

The lower-panel of Fig. 7 implies that the average velocity, λmtNt, at which to-

kens circulate evolves over time since those that are hoarded by investors are never

exchanged for transaction purposes. As shown in Figure 8, the velocity is initially

very low and it gradually converges to λ, i.e. the rate at which users need to access

the platform. That is, only users exchange tokens, and they exchange their entire

holdings mt with probability λ and do not trade with probability 1− λ. Hence, along

the transition path, one cannot exogenously set the velocity in order to determine the

equilibrium price because both variables are jointly determined.
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Figure 7: TOKEN PRICE AND SHARE OF INVESTORS AS A FUNCTION OF TIME. PARAME-

TERS: λ = .3, r = .2, M = 1, σ = .5, α = 1, χ = 2, z0 = .05, gz = .7.
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Figure 8: VELOCITY OF CIRCULATION OF TOKENS. PARAMETERS: λ = .3, r = .2, M = 1,

σ = .5, α = 1, χ = 2, z0 = .05, gz = .7.

Discussion. Before concluding, we outline how our approach to token pricing comple-
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ments the one proposed by Cong et al. (2018). They assume that users derive a utility

flow from holding tokens while we view tokens as pure media of exchange. However, as

explained in Appendix A of Cong et al. (2018), this difference is not as fundamental as

it may seem. More precisely, they show that their formulation holds when tokens are

used as means of payment to save on transaction costs, and transactions are uncertain

and lumpy. Hence the main differences between our models lie in the way transaction

benefits are modeled and how the equilibrium is determined.

Cong et al. (2018) depart from our set-up in at least two important dimensions.

First, they assume that tokens do not have to be explicitly traded to generate utility.

Second, they consider that the benefits are proportional to the numéraire value of the

tokens.10 Importing their assumptions into our framework would imply that, instead

of solving (15), agents face the following problem

v (pt, ṗt, zt) = max
m
{ztu (ptm) + ṗtm− rptm} . (23)

Utility is now proportional to the market value of token holdings ptm instead of m.

Moreover, since benefits accrue at a constant rate, there is no parameter λ measuring

the rate at which transactions are completed. But then again, this is only a formal

difference since it amounts to a rescaling of the utility function. There is, however, an

essential difference as tokens are not transferred upon the completion of each transac-

tion, which explains why the term−λm is missing on the right-hand side of (23). To see

how these two changes fundamentally modify the structure of the model, consider the

steady-state solution with homogenous users. The long-run equilibrium associated to

(23) is efficient since total revenues in the token and tokenless economies are both

equal to u−1 (r/z̄). By contrast, we have shown that the steady-state of our model is

strictly dominated by the steady-state of the tokenless economy. The equilibrium

price is strictly lower than the one that would prevail if transactions could be settled

in cash because users face the risk of not deriving any utility in the current period.

Besides having steady-states with distinct welfare properties, the price trajectories

also satisfy different requirements. The market clearing condition in Cong et al. (2018)

is fulfilled when all tokens are held by users. We do not impose such a restriction.

Instead we allow for a speculative regime where some tokens are held by investors that

10Another difference is how Cong et al. (2018) model heterogeneity among users. They assume
that users have different flow utility but the same participation cost, precisely the opposite of how we
introduce heterogeneity. We do not dwell on this distinction because it only affects the model’s algebra
and not its main message.
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do not enjoy any convenience yield. This prediction is in line with the current state of

the market for Blockchain technologies, which has seen relatively few adoptions in

spite of an ever-growing valuation.

5 Conclusion

Our model provides an answer to three of the most fundamental questions regarding

token pricing; namely, when are tokens valuable, how should they be priced, and

what are the costs of raising funds through an ICO? To the first question, our answer

is that tokens are valuable when speed is so central to the delivery of the service

that users cannot delay its consumption until they have refilled their token holdings.

Provided that this requirement holds, our pricing formula highlights that tokens

fundamentally differ from other financial instruments because tokens do not generate

any dividends until they are exchanged. The equilibrium price is always lower than

the marginal utility of the service since prospective users have to be compensated for

the opportunity cost of holding tokens instead of interest bearing securities. This in

turn clarifies the cost of ICO financing as the platform implicitly commits to selling its

product at a discount.

Having a microfounded pricing formula opens up many avenues for future re-

search. Embedding network effects and more sophisticated laws of motion for the

demand shifters, as in Cong et al. (2018), would generate richer price dynamics. A

more ambitious extension would also endogenize token supply, studying how com-

mitment to some monetary rule could be used to maximize the expected value of the

venture.

These lines of investigation are only the first forays into what promises to be a

field of research in its own right. Tokenomics is far from providing widely accepted

guidelines for the evaluation and design of tokens. As new and more complex tokens

are put on the market, the creativity of token issuers is likely to challenge that of

researchers for years to come.
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A Appendix

A.1 Proofs of Claims and Propositions

A.1.1 Proof of Claim 1

Proof. Setting pt = pt+1 in (3) yields

v̂ (p) = max
m≥0
{λu (m)− (r + λ)pm} .

Setting again pt = pt+1 in the FOC (4) and using H1, we find that

p =
λ

r + λ
u′(m∗) =

λ

r + λ

u(m∗)

m∗
(1− σ) .

Hence net returns in steady-state are equal to

v̂ (p) = λu (m∗)− (r + λ)pm∗

= λσu (m∗) =
λ1+ρ

ρ [(r + λ) p]ρ
,

where ρ ≡ (1− σ)σ. This solution can be reinserted into the first equilibrium

condition (8) to obtain

N̂ = 1−G
(

1

v̂ (p)

)
= min

{
1,
[
χv̂ (p)

]α}
= min

{
1,

[
χλ1+ρ

ρ [(r + λ) p]ρ

]α}
,

where the second equality follows from H2. In order to pin down the equilibrium

price, a second condition is required. It is provided by the law of motion evaluated at

the rest point (10). Replacing H1 in (10) yields an upward slopping relation between

N̂ and p

N̂ = M

[
p (r + λ)

λ

] 1
σ

.
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A.1.2 Proof of Proposition 1

Proof. The FOC of (15) implies that

λzt
∂u (m∗t )

∂m
= (r + λ)pt − ṗt.

Hence, as in the steady-state analysis, the net flow returns defined in (15) are

equivalent to

v (pt, ṗt, zt) = λztu (m∗t )− λzt
∂u (m∗t )

∂m
m∗t

= λztσu (m∗t )

= (λzt)
1
σ (1/ρ) [(r + λ) pt − ṗt]−ρ , (24)

where the second equality holds true because, according to H1, the utility function

is CRRA. Assumption H2 allows us to express analytically the share of users holding

tokens

Nt = 1−G
(

1

v (pt, ṗt, zt)

)
= min

{
1,
[
χv (pt, ṗt, zt)

]α}
.

Hence, when m∗t = M/Nt, two configurations may occur.

(i) Nt < 1: Then the marginal utility reads

u′
(
M

Nt

)
=

(
M

Nt

)−σ
=

(
M[

χv (pt, ṗt, zt)
]α
)−σ

=

[
ztλ

(
χ/ρ

M
1
α [(r + λ) pt − ṗt]ρ

)σ]α
,

where the last equality follows from (24). Reinserting this expression into (18), we find

that it is equivalent to

ṗt = (r + λ) pt −

[
(ztλ)1+α (χ/ρ)ασ

Mσ

] 1
1+α(1−σ)

,when Nt < 1 and m∗t = M/Nt.

(ii) Nt = 1: Then the marginal utility is by definition equals to ztu (m∗t ) and so the
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law of motion reads

ṗt = (r + λ) pt − λztu′ (M) ,when Nt = 1 and m∗t = M/Nt.

A.2 Dynamic Programming Approach

A.2.1 Dynamic Programming Solution in Discrete Time

Let Vt(m) and Wt(m) denote the value function of a user with m units of token just

before the first and second sub-periods, respectively. Given that the preference shock

is not yet revealed when Vt(m) is evaluated, the value function is by definition equal to

Vt(m) = E
[

max
c∈[0,m]

U (c, d) +Wt(m− c)
]

= λ

[
max
c∈[0,m]

u(c) +Wt(m− c)
]

+ (1− λ)Wt(m). (25)

where E [·] is the expectation operator. The constraint c ∈ [0,m] holds because users

cannot consume a quantity of services that is greater than their token holdings m. The

dummy variable d is equal to 0 with probability 1− λ. Then the agent does not need

the service and so she enters the next sub-period with the same amount of tokens, as

indicated by the last term in (25). With the complementary probability λ, the dummy

variable d is equal to 1 and the agent values the platform’s service. To determine her

optimal level of consumption, we need to characterize her continuation value Wt.

The value function Wt(m) at the beginning of the second sub-period satisfies the

following Bellman equation

Wt(m) = ptm+ max
m′
{−ptm′ + βVt+1(m′)} , (26)

where β is the agent’s discount factor. The agent can freely rebalance her position at

the market price pt. It follows from (26) that W is linear in m as W ′
t(m) = pt. Moreover,

the first order condition implies that V ′t (m
∗
t ) = pt−1/β, wherem∗t is the optimal amount

of tokens by the end of the second sub-period. All agents being identical, they hoard

the same amount of tokens. Since we have normalized the mass of users to one, the
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market for tokens clear when

mi,∗
t = M for all t and all i ∈ [0, 1] . (27)

We now have all the information necessary to differentiate (25) with respect to c.

Using the fact that W ′
t(·) = pt, we find that optimal consumption is given by

c∗t =

{
u′−1(pt) if m ≥ u′−1(pt),

m otherwise.

Since there is no uncertainty about pt, users will carry the minimum amount of

tokens necessary for the transaction, so that m∗t = c∗t ≤ u′−1(pt). Differentiating (25)

with respect to m, and replacing the market clearing condition m = M, we finally

obtain
pt−1

β
= λu′(M) + (1− λ)pt.

Focussing on the steady-state p̂, it must hold true that

p̂ = u′(M)

[
βλ

1− β + βλ

]
< u′(M). (28)

The equilibrium price is decreasing in the overall supply of tokens M , as expected.

More interestingly, services are paid at a price that is lower than their marginal utility.

This is the costs involved in requiring users to pay in tokens as the equilibrium price

is smaller than the one that would have prevailed if services could be bought using

fiat money. Note however that this implicit discount is proportional to the agent’s

impatience since p̂ converges to u′(M) when β goes to one.

A.2.2 Dynamic Programming Solution in Continuous Time

Devising the model in continuous time alleviates the algebra. We assume that agents

are hit by demand shocks that arrive at the Poisson rate λ. As before, conditional

on being hit by a demand shock, agents have to buy the service immediately and so

cannot go to the trading market to acquire tokens if needed. DISCUSS

Then there is only one value function which satisfies the following Bellman equa-
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tion

rVt(mt) = λ max
c∈[0,mt]

{u(c)− pt∆ (c)}+ λmax
∆(c)
{Vt(mt − c+ ∆ (c))− Vt(mt)}

+
∂Vt(mt)

∂t
+ [V ′t (mt)− pt] ṁt. (29)

Given that the cost of marginally increasing the amount of tokens is equal to pt, holding

mt units can be optimal only if V
′
t (mt) = pt. Hence we can ignore the last term in (29).11

Moreover, the concavity of the value function implies that it is optimal for agents to

restore their token holdings so that ∆∗ (c) = c. Thus the Bellman equation consistent

with market clearing (mt = M) boils down to

rVt(M) = λ max
c∈[0,M ]

{u(c)− ptc}+
∂Vt(M)

∂t
.

Setting token holdings equal to potential demand,M = c∗, the first order condition

reads

rV ′t (M) = λ (u′(M)− pt) +
∂2Vt(M)

∂t∂m
.

Reinserting V
′
t (M) = pt into this condition, we find that

rpt = λ (u′(M)− pt) + ṗt. (30)

At the steady-state, ṗt = 0, and so

p̂ =
λ

r + λ
u′(M) < u′(M). (31)

As r is the continuous time counterpart of (1− β) /β, (31) is equivalent to (28).

Hence the amount of service is rationed, which generates a trading surplus for users.

11In any case, at the steady-state, all tokens are held by users and ṁt = 0.
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